Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Histochem Cell Biol ; 161(1): 59-67, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37736815

RESUMEN

Despite being extensively studied because of the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interactions with mammalian cells are still poorly understood. Furthermore, little is known about this coronavirus cycle within the host cells, particularly the steps that lead to viral egress. This study aimed to shed light on the morphological features of SARS-CoV-2 egress by utilizing transmission and high-resolution scanning electron microscopy, along with serial electron tomography, to describe the route of nascent virions towards the extracellular medium. Electron microscopy revealed that the clusters of viruses in the paracellular space did not seem to result from collective virus release. Instead, virus accumulation was observed on incurved areas of the cell surface, with egress primarily occurring through individual vesicles. Additionally, our findings showed that the emission of long membrane projections, which could facilitate virus surfing in Vero cells infected with SARS-CoV-2, was also observed in non-infected cultures, suggesting that these are constitutive events in this cell lineage.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Chlorocebus aethiops , Células Vero , Línea Celular , Microscopía Electrónica de Rastreo , Mamíferos
2.
Proc Natl Acad Sci U S A ; 120(16): e2300942120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036984

RESUMEN

How are ions distributed in the three-dimensional (3D) volume confined in a nanoscale compartment? Regulation of ionic flow in the intracellular milieu has been explained by different theoretical models and experimentally demonstrated for several compartments with microscale dimensions. Most of these models predict a homogeneous distribution of ions seconds or milliseconds after an initial diffusion step formed at the ion translocation site, leaving open questions when it comes to ion/element distribution in spaces/compartments with nanoscale dimensions. Due to the influence of compartment size on the regulation of ionic flow, theoretical variations of classical models have been proposed, suggesting heterogeneous distributions of ions/elements within nanoscale compartments. Nonetheless, such assumptions have not been fully proven for the 3D volume of an organelle. In this work, we used a combination of cutting-edge electron microscopy techniques to map the 3D distribution of diffusible elements within the whole volume of acidocalcisomes in trypanosomes. Cryofixed cells were analyzed by scanning transmission electron microscopy tomography combined with elemental mapping using a high-performance setup of X-ray detectors. Results showed the existence of elemental nanodomains within the acidocalcisomes, where cationic elements display a self-excluding pattern. These were validated by Pearson correlation analysis and in silico molecular dynamic simulations. Formation of element domains within the 3D space of an organelle is demonstrated. Distribution patterns that support the electrodiffusion theory proposed for nanophysiology models have been found. The experimental pipeline shown here can be applied to a variety of models where ion mobilization plays a crucial role in physiological processes.


Asunto(s)
Trypanosoma cruzi , Trypanosoma cruzi/metabolismo , Calcio/metabolismo , Orgánulos/metabolismo , Microscopía Electrónica
3.
J Eukaryot Microbiol ; 69(6): e12939, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35916682

RESUMEN

Osmoregulation is a conserved cellular process required for the survival of all organisms. In protists, the need for robust compensatory mechanisms that can maintain cell volume and tonicity within physiological range is even more relevant, as their life cycles are often completed in different environments. Trypanosoma cruzi, the protozoan pathogen responsible for Chagas disease, is transmitted by an insect vector to multiple types of mammalian hosts. The contractile vacuole complex (CVC) is an organelle that senses and compensates osmotic changes in the parasites, ensuring their survival upon ionic and osmotic challenges. Recent work shows that the contractile vacuole is also a key component of the secretory and endocytic pathways, regulating the selective targeting of surface proteins during differentiation. Here we summarize our current knowledge of the mechanisms involved in the osmoregulatory processes that take place in the vacuole, and we explore the new and exciting functions of this organelle in cell trafficking and signaling.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Humanos , Trypanosoma cruzi/metabolismo , Vacuolas/metabolismo , Enfermedad de Chagas/parasitología , Mamíferos
4.
Biol Cell ; 113(6): 281-293, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33600624

RESUMEN

BACKGROUND INFORMATION: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection induces an alteration in the endomembrane system of the mammalian cells. In this study, we used transmission electron microscopy and electron tomography to investigate the main structural alterations in the cytoplasm of Vero cells infected with a SARS-CoV-2 isolate from São Paulo state (Brazil). RESULTS: Different membranous structures derived from the zippered endoplasmic reticulum were observed along with virus assembly through membrane budding. Also, we demonstrated the occurrence of annulate lamellae in the cytoplasm of infected cells and the presence of virus particles in the perinuclear space. CONCLUSIONS AND SIGNIFICANCE: This study contributes to a better understanding of the cell biology of SARS-CoV-2 and the mechanisms of the interaction of the virus with the host cell that promote morphological changes, recruitment of organelles and cell components, in a context of a virus-induced membrane remodelling.


Asunto(s)
Retículo Endoplásmico/virología , Membranas Intracelulares/virología , Membrana Nuclear/virología , SARS-CoV-2 , Animales , COVID-19 , Chlorocebus aethiops , Tomografía con Microscopio Electrónico , Retículo Endoplásmico/ultraestructura , Humanos , Membranas Intracelulares/ultraestructura , Microscopía Electrónica de Transmisión , Membrana Nuclear/ultraestructura , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/ultraestructura , Células Vero , Ensamble de Virus , Replicación Viral
5.
Curr Top Microbiol Immunol ; 432: 139-159, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34972883

RESUMEN

Extracellular vesicles (EVs) are nano-sized structures that play important roles in a variety of biological processes among members of the Eukaryota domain. They have been studied since the 1940s and a broader use of different microscopy techniques to image either isolated vesicles or vesicles within the intracellular milieu (trafficking) has been limited by their nanometric size, usually below the resolution limit of most standard light microscopes. The development of genetically encoded fluorescent proteins and fluorescent probes able to switch between "on" and "off" states, as well the improvement in computer-assisted microscopy, photon detector devices, illumination designs, and imaging strategies in the late Twentieth century, boosted the use of light microscopes to provide structural and functional information at the sub-diffraction resolution, taking advantage of a nondestructive analytical probe such light, and opening new possibilities in the study of life at the nanoscale. As well, traditional and novel electron microscopy techniques have been widely used in the characterization of subcellular compartments, either isolated or in situ, providing a comprehensive understanding of their functional role in many cellular processes. Here, we present basic aspects of some of these techniques that have already been applied and their potential application to the study of fungal vesicles.


Asunto(s)
Vesículas Extracelulares , Microscopía , Hongos , Proteínas
6.
Nanoscale Res Lett ; 11(1): 465, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27757946

RESUMEN

The development of new routes and strategies for nanotechnology applications that only employ green synthesis has inspired investigators to devise natural systems. Among these systems, the synthesis of gold nanoparticles using plant extracts has been actively developed as an alternative, efficient, cost-effective, and environmentally safe method for producing nanoparticles, and this approach is also suitable for large-scale synthesis. This study reports reproducible and completely natural gold nanocrystals that were synthesized using Virola oleifera extract. V. oleifera resin is rich in epicatechin, ferulic acid, gallic acid, and flavonoids (i.e., quercetin and eriodictyol). These gold nanoparticles play three roles. First, these nanoparticles exhibit remarkable stability based on their zeta potential. Second, these nanoparticles are functionalized with flavonoids, and third, an efficient, economical, and environmentally friendly mechanism can be employed to produce green nanoparticles with organic compounds on the surface. Our model is capable of reducing the resin of V. oleifera, which creates stability and opens a new avenue for biological applications. This method does not require painstaking conditions or hazardous agents and is a rapid, efficient, and green approach for the fabrication of monodisperse gold nanoparticles. Graphical Abstract The Virola oleifera reduction method for the synthesis of gold nanoparticles (AuNP's).

7.
PLoS One ; 11(8): e0161184, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27526196

RESUMEN

The cell biology discipline constitutes a highly dynamic field whose concepts take a long time to be incorporated into the educational system, especially in developing countries. Amongst the main obstacles to the introduction of new cell biology concepts to students is their general lack of identification with most teaching methods. The introduction of elaborated figures, movies and animations to textbooks has given a tremendous contribution to the learning process and the search for novel teaching methods has been a central goal in cell biology education. Some specialized tools, however, are usually only available in advanced research centers or in institutions that are traditionally involved with the development of novel teaching/learning processes, and are far from becoming reality in the majority of life sciences schools. When combined with the known declining interest in science among young people, a critical scenario may result. This is especially important in the field of electron microscopy and associated techniques, methods that have greatly contributed to the current knowledge on the structure and function of different cell biology models but are rarely made accessible to most students. In this work, we propose a strategy to increase the engagement of students into the world of cell and structural biology by combining 3D electron microscopy techniques and 3D prototyping technology (3D printing) to generate 3D physical models that accurately and realistically reproduce a close-to-the native structure of the cell and serve as a tool for students and teachers outside the main centers. We introduce three strategies for 3D imaging, modeling and prototyping of cells and propose the establishment of a virtual platform where different digital models can be deposited by EM groups and subsequently downloaded and printed in different schools, universities, research centers and museums, thereby modernizing teaching of cell biology and increasing the accessibility to modern approaches in basic science.


Asunto(s)
Células Sanguíneas/citología , Procesamiento de Imagen Asistido por Computador/métodos , Impresión Tridimensional , Animales , Masculino , Ratas , Ratas Wistar , Tomografía , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA