Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Fluids Barriers CNS ; 21(1): 15, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350930

RESUMEN

BACKGROUND: Peri-sinus structures such as arachnoid granulations (AG) and the parasagittal dural (PSD) space have gained much recent attention as sites of cerebral spinal fluid (CSF) egress and neuroimmune surveillance. Neurofluid circulation dysfunction may manifest as morphological changes in these structures, however, automated quantification of these structures is not possible and rather characterization often requires exogenous contrast agents and manual delineation. METHODS: We propose a deep learning architecture to automatically delineate the peri-sinus space (e.g., PSD and intravenous AG structures) using two cascaded 3D fully convolutional neural networks applied to submillimeter 3D T2-weighted non-contrasted MRI images, which can be routinely acquired on all major MRI scanner vendors. The method was evaluated through comparison with gold-standard manual tracing from a neuroradiologist (n = 80; age range = 11-83 years) and subsequently applied in healthy participants (n = 1,872; age range = 5-100 years), using data from the Human Connectome Project, to provide exemplar metrics across the lifespan. Dice-Sørensen and a generalized linear model was used to assess PSD and AG changes across the human lifespan using quadratic restricted splines, incorporating age and sex as covariates. RESULTS: Findings demonstrate that the PSD and AG volumes can be segmented using T2-weighted MRI with a Dice-Sørensen coefficient and accuracy of 80.7 and 74.6, respectively. Across the lifespan, we observed that total PSD volume increases with age with a linear interaction of gender and age equal to 0.9 cm3 per year (p < 0.001). Similar trends were observed in the frontal and parietal, but not occipital, PSD. An increase in AG volume was observed in the third to sixth decades of life, with a linear effect of age equal to 0.64 mm3 per year (p < 0.001) for total AG volume and 0.54 mm3 (p < 0.001) for maximum AG volume. CONCLUSIONS: A tool that can be applied to quantify PSD and AG volumes from commonly acquired T2-weighted MRI scans is reported and exemplar volumetric ranges of these structures are provided, which should provide an exemplar for studies of neurofluid circulation dysfunction. Software and training data are made freely available online ( https://github.com/hettk/spesis ).


Asunto(s)
Aprendizaje Profundo , Longevidad , Adulto , Humanos , Niño , Adolescente , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Preescolar , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Espectroscopía de Resonancia Magnética , Procesamiento de Imagen Asistido por Computador/métodos
2.
Brain ; 147(2): 337-351, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37669320

RESUMEN

Disruptions to dopamine and noradrenergic neurotransmission are noted in several neurodegenerative and psychiatric disorders. Neuromelanin-sensitive (NM)-MRI offers a non-invasive approach to visualize and quantify the structural and functional integrity of the substantia nigra and locus coeruleus. This method may aid in the diagnosis and quantification of longitudinal changes of disease and could provide a stratification tool for predicting treatment success of pharmacological interventions targeting the dopaminergic and noradrenergic systems. Given the growing clinical interest in NM-MRI, understanding the contrast mechanisms that generate this signal is crucial for appropriate interpretation of NM-MRI outcomes and for the continued development of quantitative MRI biomarkers that assess disease severity and progression. To date, most studies associate NM-MRI measurements to the content of the neuromelanin pigment and/or density of neuromelanin-containing neurons, while recent studies suggest that the main source of the NM-MRI contrast is not the presence of neuromelanin but the high-water content in the dopaminergic and noradrenergic neurons. In this review, we consider the biological and physical basis for the NM-MRI contrast and discuss a wide range of interpretations of NM-MRI. We describe different acquisition and image processing approaches and discuss how these methods could be improved and standardized to facilitate large-scale multisite studies and translation into clinical use. We review the potential clinical applications in neurological and psychiatric disorders and the promise of NM-MRI as a biomarker of disease, and finally, we discuss the current limitations of NM-MRI that need to be addressed before this technique can be utilized as a biomarker and translated into clinical practice and offer suggestions for future research.


Asunto(s)
Catecolaminas , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Sustancia Negra/diagnóstico por imagen , Melaninas , Dopamina , Biomarcadores
3.
Blood Adv ; 8(3): 608-619, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-37883803

RESUMEN

ABSTRACT: Preliminary evidence from a series of 4 adults with sickle cell disease (SCD) suggests that hematopoietic stem cell transplant (HSCT) improves cerebral hemodynamics. HSCT largely normalizes cerebral hemodynamics in children with SCD. We tested the hypothesis in adults with SCD that cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2) measured using magnetic resonance imaging, normalized to healthy values, comparing measurements from ∼1 month before to 12 to 24 months after HSCT (n = 11; age, 33.3 ± 8.9 years; 389 ± 150 days after HSCT) with age-, race- and sex-matched values from healthy adults without sickle trait (n = 28; age, 30.2 ± 5.6 years). Before transplant, 7 patients had neurological indications for transplant (eg, overt stroke) and 4 had nonneurological reasons for haploidentical bone marrow transplant (haplo-BMT). All received haplo-BMT from first-degree relatives (parent, sibling, or child donor) with reduced-intensity preparation and maintained engraftment. Before transplant, CBF was elevated (CBF, 69.11 ± 24.7 mL/100 g/min) compared with that of controls (P = .004). Mean CBF declined significantly after haplo-BMT (posttransplant CBF, 48.2 ± 13.9 mL/100 g/min; P = .003). OEF was not different from that of controls at baseline and did not change significantly after haplo-BMT (pretransplant, 43.1 ± 6.7%; posttransplant, 39.6 ± 7.0%; P = .34). After transplant, CBF and OEF were not significantly different from controls (CBF, 48.2 ± 13.4 mL/100 g/min; P = .78; and OEF, 39.6 ± 7.0%; P > .99). CMRO2 did not change significantly after haplo-BMT (pretransplant, 3.18 ± 0.87 mL O2/100 g/min; posttransplant, 2.95 ± 0.83; P = .56). Major complications of haplo-BMT included 1 infection-related death and 1 severe chronic graft-versus-host disease. Haplo-BMT in adults with SCD reduces CBF to that of control values and maintains OEF and CMRO2 on average at levels observed in healthy adult controls. The trial was registered at www.clinicaltrials.gov as #NCT01850108.


Asunto(s)
Anemia de Células Falciformes , Trasplante de Células Madre Hematopoyéticas , Adulto , Niño , Humanos , Adulto Joven , Trasplante de Médula Ósea , Anemia de Células Falciformes/terapia , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Hemodinámica , Oxígeno/metabolismo
5.
J Clin Neurosci ; 115: 121-128, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37549435

RESUMEN

BACKGROUND: Essential tremor (ET) and Parkinson's disease (PD) are the most common tremor disorders and are common indications for deep brain stimulation (DBS). In some patients, PD and ET symptoms overlap and diagnosis can be challenging based on clinical criteria alone. The objective of this study was to identify structural brain differences between PD and ET DBS patients to help differentiate these disorders and improve our understanding of the different brain regions involved in these pathologic processes. METHODS: We included ET and PD patients scheduled to undergo DBS surgery in this observational study. Patients underwent 3T brain MRI while under general anesthesia as part of their procedure. Cortical thicknesses and subcortical volumes were quantified from T1-weighted images using automated multi-atlas segmentation. We used logistic regression analysis to identify brain regions associated with diagnosis of ET or PD. RESULTS: 149 ET and 265 PD patients were included. Smaller volumes in the pallidum and thalamus and reduced thickness in the anterior orbital gyrus, lateral orbital gyrus, and medial precentral gyrus were associated with greater odds of ET diagnosis. Conversely, reduced volumes in the caudate, amygdala, putamen, and basal forebrain, and reduced thickness in the orbital part of the inferior frontal gyrus, supramarginal gyrus, and posterior cingulate were associated with greater odds of PD diagnosis. CONCLUSIONS: These findings identify structural brain differences between PD and ET patients. These results expand our understanding of the different brain regions involved in these disorders and suggest that structural MRI may help to differentiate patients with these two disorders.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/terapia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Temblor/diagnóstico
6.
NPJ Parkinsons Dis ; 8(1): 37, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383185

RESUMEN

Impulsivity is inherent to behavioral disorders such as substance abuse and binge eating. While the role of dopamine in impulse behavior is well established, γ-aminobutyric acid (GABA) therapies have promise for the treatment of maladaptive behaviors. In Parkinson disease (PD), dopaminergic therapies can result in the development of impulsive and compulsive behaviors, and this clinical syndrome shares similar pathophysiology to that seen in addiction, substance abuse, and binge-eating disorders. We hypothesized that impulsive PD patients have a reduced thalamic GABAergic response to dopamine therapy. To test this hypothesis, we employed GABA magnetic resonance spectroscopy, D2-like receptor PET imaging, and clinical and quantitative measures of impulsivity in PD patients (n = 33), before and after dopamine agonist administration. We find a blunted thalamic GABA response to dopamine agonists in patients with elevated impulsivity (p = 0.027). These results emphasize how dopamine treatment differentially augments thalamic GABA concentrations, which may modify behavioral impulsivity.

7.
Neurology ; 99(2): e176-e186, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35428731

RESUMEN

BACKGROUND AND OBJECTIVES: Individuals with cerebellar ataxia (CA) can develop impulsive behavioral symptoms, often resulting in negative interpersonal consequences, detrimentally affecting their quality of life. Limited evidence exists concerning impulsivity in CA and its associated behavioral changes. We assessed impulsive traits in CA using the Barratt Impulsivity Scale (BIS-11) and compared them with those of Parkinson disease (PD) to investigate the differences in the impulsive trait profiles between CA and PD. METHODS: We conducted a dual-center cross-sectional study with individuals with CA and PD enrolled through consecutive sampling from movement disorders clinics at Columbia University Medical Center and Vanderbilt University Medical Center, respectively. Age-matched controls were recruited at the respective institutions. Participants were excluded if they had prior or comorbid neurologic and psychiatric diseases known to be associated with impulsivity. All participants completed the BIS-11 questionnaire as a measure of impulsive traits. We used a general linear model and a least absolute shrinkage and selection operation regression to compare the total, subscale, and individual items of the BIS-11 scores between groups. Subgroup analyses were performed to isolate cerebellar contributions to impulsivity from potential effects of extracerebellar pathology and dopaminergic dysfunction or medications. RESULTS: A total of 190 participants-90 age-matched controls, 50 participants with CA, and 50 with PD-completed the assessments. Persons with CA reported 9.7% higher BIS-11 scores than controls (p < 0.001), while persons with PD reported 24.9% higher scores than controls (p < 0.001). In CA, the most affected domain of impulsivity was nonplanning. In contrast, persons with PD noted greater impulsivity across the nonplanning, attentional, and motor domains. DISCUSSION: Impulsivity in CA is uniquely driven by the nonplanning trait, unlike in PD. This suggests that the cerebellum and basal ganglia may differentially govern impulsive behaviors with the cerebellum contributing to the brain circuitry of impulsivity in a domain-specific manner.


Asunto(s)
Ataxia Cerebelosa , Enfermedad de Parkinson , Ataxia Cerebelosa/complicaciones , Estudios Transversales , Humanos , Conducta Impulsiva , Calidad de Vida
8.
Brain ; 145(10): 3488-3499, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34951464

RESUMEN

Impulsive-compulsive behaviours manifest in a substantial proportion of subjects with Parkinson's disease. Reduced ventral striatum dopamine receptor availability, and increased dopamine release is noted in patients with these symptoms. Prior studies of impulsivity suggest that midbrain D2 autoreceptors regulate striatal dopamine release in a feedback inhibitory manner, and in healthy populations, greater impulsivity is linked to poor proficiency of this inhibition. This has not been assessed in a Parkinson's disease population. Here, we applied 18F-fallypride PET studies to assess striatal and extrastriatal D2-like receptor uptake in a placebo-controlled oral dextroamphetamine sequence. We hypothesized that Parkinson's disease patients with impulsive-compulsive behaviours would have greater ventral striatal dopaminergic response to dextroamphetamine, and that an inability to attenuate ventral striatal dopamine release via midbrain D2 autoreceptors would underlie this response. Twenty patients with Parkinson's disease (mean age = 64.1 ± 5.8 years) both with (n = 10) and without (n = 10) impulsive-compulsive behaviours, participated in a single-blind dextroamphetamine challenge (oral; 0.43 mg/kg) in an OFF dopamine state. All completed PET imaging with 18F-fallypride, a high-affinity D2-like receptor ligand, in the placebo and dextroamphetamine state. Both voxelwise and region of interest analyses revealed dextroamphetamine-induced endogenous dopamine release localized to the ventral striatum, and the caudal-medial orbitofrontal cortex. The endogenous dopamine release observed in the ventral striatum correlated positively with patient-reported participation in reward-based behaviours, as quantified by the self-reported Questionnaire for Impulsivity in Parkinson's disease Rating Scale. In participants without impulsive-compulsive behaviours, baseline midbrain D2 receptor availability negatively correlated with ventral striatal dopamine release; however, this relationship was absent in those with impulsive-compulsive behaviours. These findings emphasize that reward-based behaviours in Parkinson's disease are regulated by ventral striatal dopamine release, and suggest that loss of inhibitory feedback from midbrain autoreceptors may underlie the manifestation of impulsive-compulsive behaviours.


Asunto(s)
Enfermedad de Parkinson , Estriado Ventral , Anciano , Humanos , Persona de Mediana Edad , Anfetamina/uso terapéutico , Autorreceptores , Dextroanfetamina/farmacología , Dopamina , Conducta Impulsiva/fisiología , Ligandos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Receptores de Dopamina D2/metabolismo , Método Simple Ciego , Estriado Ventral/diagnóstico por imagen
9.
Hum Brain Mapp ; 42(8): 2322-2331, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33755270

RESUMEN

Voxel-based morphometry is an established technique to study focal structural brain differences in neurologic disease. More recently, texture-based analysis methods have enabled a pattern-based assessment of group differences, at the patch level rather than at the voxel level, allowing a more sensitive localization of structural differences between patient populations. In this study, we propose a texture-based approach to identify structural differences between the cerebellum of patients with Parkinson's disease (n = 280) and essential tremor (n = 109). We analyzed anatomical differences of the cerebellum among patients using two features: T1-weighted MRI intensity, and a texture-based similarity feature. Our results show anatomical differences between groups that are localized to the inferior part of the cerebellar cortex. Both the T1-weighted intensity and texture showed differences in lobules VIII and IX, vermis VIII and IX, and middle peduncle, but the texture analysis revealed additional differences in the dentate nucleus, lobules VI and VII, vermis VI and VII. This comparison emphasizes how T1-weighted intensity and texture-based methods can provide a complementary anatomical structure analysis. While texture-based similarity shows high sensitivity for gray matter differences, T1-weighted intensity shows sensitivity for the detection of white matter differences.


Asunto(s)
Cerebelo/patología , Temblor Esencial/patología , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Enfermedad de Parkinson/patología , Anciano , Cerebelo/diagnóstico por imagen , Diagnóstico Diferencial , Temblor Esencial/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico por imagen
10.
Ann Clin Transl Neurol ; 7(4): 437-448, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32227451

RESUMEN

OBJECTIVE: Impulsive decision-making is characterized by actions taken without considering consequences. Patients with Parkinson's disease (PD) who receive dopaminergic treatment, especially dopamine agonists, are at risk of developing impulsive-compulsive behaviors (ICBs). We assessed impulse-related changes across a large heterogeneous PD population using the Barratt impulsivity scale (BIS-11) by evaluating BIS-11 first- and second-order factors. METHODS: We assessed a total of 204 subjects: 93 healthy controls (HCs), and 68 ICB- and 43 ICB + PD patients who completed the BIS-11. Using a general linear model and a least absolute shrinkage and selection operation regression, we compared BIS-11 scores between the HC, ICB- PD, and ICB + PD groups. RESULTS: Patients with PD rated themselves as more impulsive than HCs in the BIS-11 total score, second-order attention domain, and first-order attention and self-control domains. ICB + patients recorded higher total scores as well as higher scores in the second-order non-planning domain and in self-control and cognitive complexity than ICB- patients. INTERPRETATION: These results indicate that the patients with PD show particular problems with attentional control, whereas ICB + patients show a distinct problem in cognitive control and complexity. Additionally, it appears that all patients with PD are more impulsive than their age- and sex-matched healthy peers. Increased impulsivity may be a result of the disease course, or attributed to dopaminergic medication use, but these results emphasize the importance of the cognitive components of impulsivity in patients with PD.


Asunto(s)
Atención/fisiología , Disfunción Cognitiva/fisiopatología , Dopaminérgicos/uso terapéutico , Función Ejecutiva/fisiología , Conducta Impulsiva/fisiología , Enfermedad de Parkinson/fisiopatología , Autocontrol , Anciano , Disfunción Cognitiva/etiología , Autoevaluación Diagnóstica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Autoinforme
11.
Psychopharmacology (Berl) ; 222(3): 447-57, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22418731

RESUMEN

RATIONALE: Dopamine systems vary through development in a manner that can impact drugs acting on those systems. Dietary factors can also impact the effects of drugs acting on dopamine systems. OBJECTIVES: This study examined whether eating high fat chow alters locomotor effects of cocaine (1-56 mg/kg) in adolescent and adult female rats. METHODS: Cocaine was studied in rats (n = 6/group) with free access to standard (5.7% fat) or high fat (34.3%) chow or restricted access to high fat chow (body weight matched to rats eating standard chow). RESULTS: After 1 week of eating high fat chow (free or restricted access), sensitivity to cocaine was significantly increased in adolescent and adult rats, compared with rats eating standard chow. Sensitivity to cocaine was also increased in adolescent rats with restricted, but not free, access to high fat chow for 4 weeks. When adolescent and adult rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. In adolescent and adult female rats eating high fat chow, but not those eating standard chow, sensitivity to cocaine increased progressively over once weekly tests with cocaine (i.e., sensitization) in a manner that was not statistically different between adolescents and adults. CONCLUSIONS: These results show that eating high fat chow alters sensitivity of female rats to acutely administered cocaine and also facilitates the development of sensitization to cocaine. That the type of food consumed can increase drug effects might have relevance to vulnerability to abuse cocaine in the female population.


Asunto(s)
Cocaína/farmacología , Grasas de la Dieta/administración & dosificación , Actividad Motora/efectos de los fármacos , Envejecimiento , Animales , Corticosterona/sangre , Relación Dosis-Respuesta a Droga , Estro , Femenino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA