RESUMEN
Treelines are expected to expand into alpine ecosystems with global warming, but herbivory may delay this expansion. This study quantifies long-term effects of temporally varying sheep densities on birch recruitment and growth in the treeline ecotone. We examined treeline ecotone successional trajectories and legacy effects in a replicated experimental setup, where enclosures were present for 14 years with three different sheep densities (0, 25, 80 sheep km-2). Before and after the enclosures were present, the site had an ambient sheep density of 20-25 km-2. We sampled field data 4 years after enclosure removal and compared these to data sampled 8 and 9 years after enclosure erection. We sampled data on birch browsing pressure, birch distribution across life-stages (recruits, saplings, and mature trees), and birch annual radial growth. Fourteen years of increased or decreased sheep density had observable legacy effects depending on birch life-stage. Birch recruit prevalence decreased in areas, where sheep were reintroduced after being absent for 14 years. For the same areas, sapling and mature tree prevalence increased, indicating that these areas have entered alternative successional trajectories compared to areas, where sheep were present the whole time. Birch annual radial growth showed a lag effect of 2 years after enclosure removal, with growth decreasing in areas where sheep had been absent for 14 years and increasing where sheep densities were high. Thus, decadal-scale absences of herbivores can leave legacy effects due to increased numbers of trees that have high resistance to later-introduced herbivore browsing.
Asunto(s)
Ecosistema , Herbivoria , Animales , Betula , Calentamiento Global , Ovinos , ÁrbolesRESUMEN
Urbanisation has strong effects on biodiversity patterns, but impacts vary among species groups and across spatial scales. From a local biodiversity management perspective, a more general understanding of species richness across taxonomic groups is required. This study aims to investigate how fine-scale land-cover variables influence species richness patterns of locally threatened and alien species. The study was performed in Trondheim, Norway, covering a steep urbanisation gradient. Spatially correlated Generalised Linear Mixed Effects Models predicting the number of all-, threatened-and alien species by taxon, habitat, habitat heterogeneity and mean aspect within 500 m×500 m grid cells were constructed. The habitat categories were based on detailed land-cover maps. The highest number of threatened species was found in habitats relatively less affected by humans, whereas the number of alien species were only dependent on taxonomic group and spatial correlation. It is shown that land-cover variables within an administrative border can be used to make predictions on species richness within overarching species groups. Recommendations to biodiversity management agencies are to ensure protection of natural habitats to favour locally threatened species, and closely monitor urban areas to mitigate the introduction and spread of alien species.
Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Especies en Peligro de Extinción , Urbanización/tendencias , Agricultura , Animales , Actividades Humanas , Humanos , Noruega , Población Rural , Especificidad de la EspecieRESUMEN
Herbivory has potential to modify vegetation responses to climatic changes. However, climate and herbivory also affect each other, and rarely work in isolation from other ecological factors, such as plant-plant competition. Thus, it is challenging to predict the extent to which herbivory can counteract, amplify, or interact with climate impacts on ecosystems. Here, we investigate how moose modify climatic responses of boreal trees by using experimental exclosures on two continents and modeling complex causal pathways including several climatic factors, multiple tree species, competition, tree height, time, food availability, and herbivore presence, density, and browsing intensity. We show that moose can counteract, that is, "cool down" positive temperature responses of trees, but that this effect varies between species depending on moose foraging preferences. Growth of preferred deciduous trees was strongly affected by moose, whereas growth of less preferred conifers was mostly driven by climate and tree height. In addition, moose changed temperature responses of rowan in Norway and balsam fir in Canada, by making fir more responsive to temperature but decreasing the strength of the temperature response of rowan. Snow protected trees from browsing, and therefore moose "cooling power" might increase should a warming climate result in decreased snow cover. Furthermore, we found evidence of indirect effects of moose via plant-plant competition: By constraining growth of competing trees, moose can contribute positively to the growth of other trees. Our study shows that in boreal forests, herbivory cooling power is highly context dependent, and in order to understand its potential to prevent changes induced by warming climate, species differences, snow, competition, and climate effects on browsing need to be considered.
Asunto(s)
Ecosistema , Taiga , Animales , Canadá , Cambio Climático , Bosques , Noruega , ÁrbolesRESUMEN
Herbivores have important impacts on ecological and ecosystem dynamics. Population density and species composition are both important determinants of these impacts. Large herbivore communities are shifting in many parts of the world driven by changes in livestock management and exploitation of wild populations. In this study, we analyse changes in large herbivore community structure over 66 years in Norway, with a focus on the contribution of wildlife and livestock. We calculate metabolic biomass of all large-herbivore species across the whole region between 1949 and 2015. Temporal and spatial patterns in herbivore community change are investigated and we test hypotheses that changes in wildlife biomass are driven by competition with livestock. We find that total herbivore biomass decreased from 1949 to a minimum in 1969 due to decreases in livestock biomass. Increasing wild herbivore populations lead to an increase in total herbivore biomass by 2009. Herbivore communities have thus reverted from a livestock dominated state in 1949 (2% of large herbivore metabolic biomass comprised of wildlife species) to a state with roughly equal wildlife and livestock (48% of metabolic biomass comprised of wildlife species). Declines in livestock biomass were a modest predictor of wildlife increases, suggesting that competition with livestock has not been a major limiting factor of wild herbivore populations over the past decades. Instead there was strong geographic variation in herbivore community change, with milder lowland regions becoming more dominated by wild species, but colder mountain and northern regions remaining dominated by livestock. Our findings indicate that there has been notable rewilding of herbivore communities and herbivore-ecosystem interactions in Norway, particularly in milder lowland regions. However, Norwegian herbivores remain mostly regulated by management, and our findings call for integrated management of wild and domestic herbivores.
Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Herbivoria , Dinámica Poblacional/estadística & datos numéricos , Dinámica Poblacional/tendencias , Animales , Animales Salvajes , Biomasa , Ganado , Noruega , Factores de TiempoRESUMEN
Sheep grazing is an important part of agriculture in the North Atlantic region, defined here as the Faroe Islands, Greenland, Iceland, Norway and Scotland. This process has played a key role in shaping the landscape and biodiversity of the region, sometimes with major environmental consequences, and has also been instrumental in the development of its rural economy and culture. In this review, we present results of the first interdisciplinary study taking a long-term perspective on sheep management, resource economy and the ecological impacts of sheep grazing, showing that sustainability boundaries are most likely to be exceeded in fragile environments where financial support is linked to the number of sheep produced. The sustainability of sheep grazing can be enhanced by a management regime that promotes grazing densities appropriate to the site and supported by area-based subsidy systems, thus minimizing environmental degradation, encouraging biodiversity and preserving the integrity of ecosystem processes.
Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Monitoreo del Ambiente/métodos , Herbivoria , Ovinos/crecimiento & desarrollo , Animales , Océano Atlántico , Conservación de los Recursos Naturales/economía , Monitoreo del Ambiente/economía , Población RuralRESUMEN
Large herbivore consumption of forage is known to affect vegetation composition and thereby ecosystem functions. It is thus important to understand how diet composition arises as a mixture of individual variation in preferences and environmental drivers of availability, but few studies have quantified both. Based on 10 years of data on diet composition by aid of microhistological analysis for sheep kept at high and low population density, we analysed how both individual traits (sex, age, body mass, litter size) linked to preference and environmental variation (density, climate proxies) linked to forage availability affected proportional intake of herbs (high quality/low availability) and Avenella flexuosa (lower quality/high availability). Environmental factors affecting current forage availability such as population density and seasonal and annual variation in diet had the most marked impact on diet composition. Previous environment of sheep (switch between high and low population density) had no impact on diet, suggesting a comparably minor role of learning for density dependent diet selection. For individual traits, only the difference between lambs and ewes affected proportion of A. flexuosa, while body mass better predicted proportion of herbs in diet. Neither sex, body mass, litter size, ewe age nor mass of ewe affected diet composition of lambs, and there was no effect of age, body mass or litter size on diet composition of ewes. Our study highlights that diet composition arises from a combination of preferences being predicted by lamb and ewes' age and/or body mass differences, and the immediate environment in terms of population density and proxies for vegetation development.
Asunto(s)
Dieta/veterinaria , Ambiente , Conducta Alimentaria/fisiología , Individualidad , Oveja Doméstica , Alimentación Animal , Animales , Peso Corporal , Femenino , Masculino , Densidad de Población , Factores Sexuales , OvinosRESUMEN
One of the clearest predictions from the IPCC is that we can expect much less snow cover due to global warming in the 21st century, especially in the lower alpine areas. In alpine ecosystems, snow accumulation in depressions gives rise to distinct snow-bed vegetation types, assumed to play a key role in ecosystem function. A delayed plant phenology yields high-quality forage in late summer for wild and domestic herbivores. Yet, the mechanistic pathways for how declining snow may affect future performance of large herbivores beyond the effect of phenology remain poorly documented. Here, we link unique individual-based data on diet choice, habitat selection and performance of domestic sheep over a 10-year period to manually GPS-recorded spatial positions of snow cover in early summer (0.57% to 43.3% in snow beds on 1st of July) in an alpine ecosystem. Snowy winters gave a higher proportion of easily digestible herbs in the diet and a more variable use of snow-bed and meadow vegetation types resulting in faster growing lambs. These patterns were consistent between two density treatment levels although slightly more marked for diet at low density, suggesting that effects of simple mitigation efforts such as managing population numbers will be meagre. Our study thus yields novel insight into the strong impact of melting snow on ecosystem function in alpine habitats, which are likely to affect productivity of both domestic and wild ungulate populations.
Asunto(s)
Ecosistema , Pradera , Herbivoria , Estaciones del Año , Oveja Doméstica/fisiología , Nieve , Altitud , Animales , Cambio Climático , Oveja Doméstica/crecimiento & desarrolloRESUMEN
Recent studies from mountainous areas of small spatial extent (<2500 km(2) ) suggest that fine-grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate-change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000-m(2) units (community-inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1-km(2) units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1-km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100-km(2) units. Ellenberg temperature indicator values in combination with plant assemblages explained 46-72% of variation in LmT and 92-96% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km(2) units peaked at 60-65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography-related variables and latitude explained 35% of variation in growing-season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing-season CiT within 100-km(2) units was, on average, 1.8 times greater (0.32 °C km(-1) ) than spatial turnover in growing-season GiT (0.18 °C km(-1) ). We conclude that thermal variability within 1-km(2) units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.
Asunto(s)
Biota , Cambio Climático , Fenómenos Fisiológicos de las Plantas , Europa (Continente) , Geografía , Modelos Teóricos , TemperaturaRESUMEN
The treeline ecotone divides forest from open alpine or arctic vegetation states. Treelines are generally perceived to be temperature limited. The role of herbivores in limiting the treeline is more controversial, as experimental evidence from relevant large scales is lacking. Here we quantify the impact of different experimentally controlled herbivore densities on the recruitment and survival of birch Betula pubescens tortuosa along an altitudinal gradient in the mountains of southern Norway. After eight years of summer grazing in large-scale enclosures at densities of 0, 25, and 80 sheep/km2, birch recruited within the whole altitudinal range of ungrazed enclosures, but recruitment was rarer in enclosures with low-density sheep and was largely limited to within the treeline in enclosures with high-density sheep. In contrast, the distribution of saplings (birch older than the experiment) did not differ between grazing treatments, suggesting that grazing sheep primarily limit the establishment of new tree recruits rather than decrease the survival of existing individuals. This study provides direct experimental evidence that herbivores can limit the treeline below its potential at the landscape scale and even at low herbivore densities in this climatic zone. Land use changes should thus be considered in addition to climatic changes as potential drivers of ecotone shifts.
Asunto(s)
Altitud , Betula/crecimiento & desarrollo , Conducta Alimentaria/fisiología , Ovinos/fisiología , Animales , Ecosistema , NoruegaRESUMEN
Plants of low stature may benefit from the presence of large herbivores through removal of tall competitive neighbours and increased light availability. Accordingly, removal of grazers has been predicted to disfavour small species. In addition to this indirect beneficial effect, the population dynamics of plants is strongly influenced by variation in external conditions such as temperature and precipitation. However, few studies have examined the interaction between large herbivores and inter-annual variation in climate for the population dynamics of small plant species not preferred by herbivores. We studied three populations of the perennial herb Viola biflora exposed to different sheep densities (high, low and zero) for 6 years in a field experiment. Plants were also impacted by invertebrate and small vertebrate herbivores (rodents). Rates of growth were marginally higher at high sheep densities, and during warm summers both survival and growth were higher when sheep were present. Thus, while the height of tall herbs was positively related to July temperature, it was less so in the treatments with sheep, suggesting that sheep reduce the negative effects of interspecific competition for this small herb. Life table response experiment analyses revealed that the population growth rate (lambda) was slightly lower in the absence of sheep, but between-year variation in lambda was larger than variation among sheep density treatments. lambda was negatively related to July temperature, with an additional negative effect of vertebrate grazing frequency (sheep or rodent grazing). The evidence from this 6-year study suggests that the population dynamics of Viola biflora is determined by a complex interplay between climate and grazing by both large and small herbivores.
Asunto(s)
Clima , Conducta Alimentaria , Ovinos , Viola , Animales , Ecosistema , Noruega , Dinámica PoblacionalRESUMEN
Herbivores shape plant communities through selective foraging. However, both herbivore selectivity and the plant's ability to tolerate or resist herbivory may depend on the density of herbivores. In an alpine ecosystem with a long history of grazing, plants are expected to respond to both enhanced and reduced grazing pressures, and the interaction between plant traits and changes in species abundance are expected to differ between the two types of alteration of grazing regime. To understand the mechanisms behind species response, we investigated the relationship between sheep selectivity (measured in situ), plant traits and experimentally derived measures of change in species abundance as a response to the enhancement (from low to high density) or cessation (from low to zero density) of sheep grazing pressure over a six-year time period for 22 abundant herb species in an alpine habitat in south Norway. Sheep selected large, late-flowering herbs with a low leaf C/N ratio. Species that increased in abundance in response to enhanced grazing pressure were generally small and had high root/shoot ratios, thus exhibiting traits that reflect both resistance (through avoidance) and tolerance (through regrowth capacity) strategies. The abundance of selected species remained stable during the study period, and also under the enhanced grazing pressure treatment. There was, however, a tendency for selected species to respond positively to cessation of grazing, although overall responses to cessation of grazing were much less pronounced than responses to enhanced grazing. Avoidance through short stature (probably associated with increased light availability through the removal of tall competitors) as well as a certain amount of regrowth capacity appear to be the main mechanisms behind a positive response to enhanced grazing pressure in this study. The plant trait perspective clearly improves our insight into the mechanisms behind observed changes in species abundance when the disturbance regime is altered.
Asunto(s)
Ecosistema , Conducta Alimentaria/fisiología , Desarrollo de la Planta , Ovinos/fisiología , Animales , Carbono/análisis , Modelos Lineales , Nitrógeno/análisis , Noruega , Plantas/química , Dinámica Poblacional , Especificidad de la EspecieRESUMEN
Grazing by large herbivores may negatively affect bird populations. This is of great conservation concern in areas with intensive sheep grazing. Sheep management varies substantially between regions, but no study has been performed in less intensively grazed systems. In a fully replicated, landscape scale experiment with three levels of sheep grazing, we tested whether the abundance and diversity of an assemblage of mountain birds were negatively affected by grazing or if grazing facilitated the bird assemblage. Density of birds was higher at high sheep density compared with low sheep density or no sheep by the fourth grazing season, while there was no clear effect on bird diversity. Thus, agricultural traditions and land use politics determining sheep density may change the density of avifauna in either positive or negative directions.
Asunto(s)
Aves , Ecosistema , Conducta Alimentaria , Ovinos , Animales , Densidad de Población , Factores de TiempoRESUMEN
Inter-specific competition, facilitation and predation influence herbivore assemblages, but no study has experimentally explored the interactions between large ungulates and small rodents. In a fully replicated, landscape scale experiment, we manipulated densities of domestic sheep in mountain pastures in Norway. We then determined population growth and densities of rodents by live trapping in each of the areas with different sheep densities. We found that the (summer) population growth rate and autumn density of the field vole (Microtus agrestis) was lower at high sheep density. This provides the first experimental evidence of negative interactions between an ungulate and small rodent species. There was no effect on the bank vole (Clethrionomys glareolus), whose diet differs from sheep. Sheep density, therefore, potentially alters the pattern of inter-specific population synchrony amongst voles. Our study shows that negative interactions between large ungulates and small rodents may be species-specific and negative population consequences for the rodent population appear above threshold ungulate densities.