Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1410666, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044952

RESUMEN

Methane-oxidizing bacteria (MOB) is a group of planktonic microorganisms that use methane as their primary source of cellular energy. For tropical lakes in monsoon Asia, there is currently a knowledge gap on MOB community diversity and the factors influencing their abundance. Herewith, we present a preliminary assessment of the MOB communities in three maar lakes in tropical monsoon Asia using Catalyzed Reporter Deposition, Fluorescence In-Situ Hybridization (CARD-FISH), 16S rRNA amplicon sequencing, and pmoA gene sequencing. Correlation analysis between MOB abundances and lakes' physicochemical parameters following seasonal monsoon events were performed to explain observed spatial and temporal patterns in MOB diversity. The CARD-FISH analyses detected the three MOB types (I, II, and NC10) which aligned with the results from 16S rRNA amplicons and pmoA gene sequencing. Among community members based on 16S rRNA genes, Proteobacterial Type I MOB (e.g., Methylococcaceae and Methylomonadaceae), Proteobacterial Type II (Methylocystaceae), Verrucomicrobial (Methylacidiphilaceae), Methylomirabilota/NC10 (Methylomirabilaceae), and archaeal ANME-1a were found to be the dominant methane-oxidizers in three maar lakes. Analysis of microbial diversity and distribution revealed that the community compositions in Lake Yambo vary with the seasons and are more distinct during the stratified period. Temperature, DO, and pH were significantly and inversely linked with type I MOB and Methylomirabilota during stratification. Only MOB type I was influenced by monsoon changes. This research sought to establish a baseline for the diversity and ecology of planktonic MOB in tropical monsoon Asia to better comprehend their contribution to the CH4 cycle in tropical freshwater ecosystems.

2.
Microorganisms ; 9(6)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206081

RESUMEN

Empirical evidence suggests that the frequency/intensity of extreme weather events might increase in a warming climate. It remains unclear how these events quantitatively impact dissolved organic carbon (DOC), a pool approximately equal to CO2 in the atmosphere. This study conducted a weekly-to-biweekly sampling in a deep subtropical reservoir in the typhoon-prevailing season (June to September) from 2004 to 2009, at which 33 typhoons with distinctive precipitation (<1~362 mm d-1) had passed the study site. Our analyses indicated that the phosphate (i.e., DIP; <10~181 nMP) varied positively with the intensity of the accumulated rainfall 2-weeks prior; bacteria growth rate (0.05~3.68 d-1) behaved as a positive function of DIP, and DOC concentrations (54~119 µMC) changed negatively with bacterial production (1.2~26.1 mgC m-3 d-1). These implied that the elevated DIP-loading in the hyperpycnal flow induced by typhoons could fuel bacteria growth and cause a significant decline of DOC concentrations. As the typhoon's intensity increases, many mineral-limited lentic freshwater ecosystems might become more like a CO2 source injecting more CO2 back to the atmosphere, creating a positive feedback loop that might generate severer extreme weather events.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...