Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vaccine ; 42(15): 3445-3454, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38631956

RESUMEN

Major histocompatibility complex class II (MHC-II) molecules are involved in immune responses against pathogens and vaccine candidates' immunogenicity. Immunopeptidomics for identifying cancer and infection-related antigens and epitopes have benefited from advances in immunopurification methods and mass spectrometry analysis. The mouse anti-MHC-II-DR monoclonal antibody L243 (mAb-L243) has been effective in recognising MHC-II-DR in both human and non-human primates. It has also been shown to cross-react with other animal species, although it has not been tested in livestock. This study used mAb-L243 to identify Staphylococcus aureus and Salmonella enterica serovar Typhimurium peptides binding to cattle and swine macrophage MHC-II-DR molecules using flow cytometry, mass spectrometry and two immunopurification techniques. Antibody cross-reactivity led to identifying expressed MHC-II-DR molecules, together with 10 Staphylococcus aureus peptides in cattle and 13 S. enterica serovar Typhimurium peptides in swine. Such data demonstrates that MHC-II-DR expression and immunocapture approaches using L243 mAb represents a viable strategy for flow cytometry and immunopeptidomics analysis of bovine and swine antigen-presenting cells.


Asunto(s)
Anticuerpos Monoclonales , Macrófagos , Salmonella typhimurium , Staphylococcus aureus , Animales , Bovinos , Porcinos/inmunología , Staphylococcus aureus/inmunología , Anticuerpos Monoclonales/inmunología , Macrófagos/inmunología , Salmonella typhimurium/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Reacciones Cruzadas/inmunología , Citometría de Flujo , Espectrometría de Masas , Ratones
2.
Front Immunol ; 13: 859905, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693819

RESUMEN

Fifty ~20-amino acid (aa)-long peptides were selected from functionally relevant SARS-CoV-2 S, M, and E proteins for trial B-21 and another 53 common ones, plus some new ones derived from the virus' main genetic variants for complementary trial C-21. Peptide selection was based on tremendous SARS-CoV-2 genetic variability for analysing them concerning vast human immunogenetic polymorphism for developing the first supramutational, Colombian SARS-protection (SM-COLSARSPROT), peptide mixture. Specific physicochemical rules were followed, i.e., aa predilection for polyproline type II left-handed (PPIIL) formation, replacing ß-branched, aromatic aa, short-chain backbone H-bond-forming residues, π-π interactions (n→π* and π-CH), aa interaction with π systems, and molecular fragments able to interact with them, disrupting PPIIL propensity formation. All these modified structures had PPIIL formation propensity to enable target peptide interaction with human leukocyte antigen-DRß1* (HLA-DRß1*) molecules to mediate antigen presentation and induce an appropriate immune response. Such modified peptides were designed for human use; however, they induced high antibody titres against S, M, and E parental mutant peptides and neutralising antibodies when suitably modified and chemically synthesised for immunising 61 major histocompatibility complex class II (MHCII) DNA genotyped Aotus monkeys (matched with their corresponding HLA-DRß1* molecules), predicted to cover 77.5% to 83.1% of the world's population. Such chemically synthesised peptide mixture represents an extremely pure, stable, reliable, and cheap vaccine for COVID-19 pandemic control, providing a new approach for a logical, rational, and soundly established methodology for other vaccine development.


Asunto(s)
COVID-19 , Vacunas contra la Malaria , Secuencia de Aminoácidos , Vacunas contra la COVID-19 , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Imidazoles , Péptidos , SARS-CoV-2/genética , Sulfonamidas , Tiofenos
3.
Front Genet ; 13: 772885, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186024

RESUMEN

The major histocompatibility complex (MHC) exerts great influence on responses to infectious diseases and vaccination due to its fundamental role in the adaptive immune system. Knowledge about MHC polymorphism distribution among breeds can provide insights into cattle evolution and diversification as well as population-based immune response variability, thus guiding further studies. Colombian Simmental and Simbrah cattle's BoLA-DRB3 genetic diversity was compared to that of taurine and zebuine breeds worldwide to estimate functional diversity. High allele richness was observed for Simmental and Simbrah cattle; nevertheless, high homozygosity was associated with individual low sequence variability in both the ß1 domain and the peptide binding region (PBR), thereby implying reduced MHC-presented peptide repertoire size. There were strong signals of positive selection acting on BoLA-DRB3 in all populations, some of which were poorly structured and displayed common alleles accounting for their high genetic similarity. PBR sequence correlation analysis suggested that, except for a few populations exhibiting some divergence at PBR, global diversity regarding potential MHC-presented peptide repertoire could be similar for the cattle populations analyzed here, which points to the retention of functional diversity in spite of the selective pressures imposed by breeding.

4.
Prev Vet Med ; 200: 105591, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35149317

RESUMEN

Chlamydia psittaci is a highly zoonotic bacteria distributed worldwide; it is responsible for psittacosis, one of the most important infectious diseases affecting the Psittacidae, mostly parrots. This work was aimed at determining C. psittaci prevalence and genotype in 177 parrots confiscated in Colombia; cloacal swab (166) and faecal (177) samples were analysed from birds confiscated and housed in a Temporary Wildlife Reception Centre (Centro de Reception de Fauna Temporal). Conventional PCR was run on the samples for amplifying the MOMP gene and then the ompA gene. The C. psittaci genotype A was found in 81.3 % (144/177) of the birds analysed. Cloacal swabs accounted for 129/166 (77.7 %) positive samples and faecal matter for 53/177 (29.9 %), 38 birds proving positive for both types of sample; there was an 8.15 times greater probability of detection for cloacal swabs compared to faecal swabs (p < 0.05). Clinical examination findings were correlated with the animals' positivity for cloacal swabs, faecal matter or both, finding a statistically significant relationship with low respiratory rate (p < 0.05) and broken plumage for cloacal swab sample results (p < 0.1). Even though 85 % seroprevalence has previously been reported in Colombia using indirect ELISA, this study reports for the first time C. psittaci genotype A endemicity in psittacines in captivity in Colombia using molecular techniques, considering the zoonotic risk involved in having these birds as pets.


Asunto(s)
Enfermedades de las Aves , Chlamydophila psittaci , Loros , Psitacosis , Animales , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/microbiología , Chlamydophila psittaci/genética , Colombia/epidemiología , Prevalencia , Psitacosis/epidemiología , Psitacosis/veterinaria , Estudios Seroepidemiológicos
5.
Front Immunol ; 12: 724060, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539660

RESUMEN

Thirty-five peptides selected from functionally-relevant SARS-CoV-2 spike (S), membrane (M), and envelope (E) proteins were suitably modified for immunising MHC class II (MHCII) DNA-genotyped Aotus monkeys and matched with HLA-DRß1* molecules for use in humans. This was aimed at producing the first minimal subunit-based, chemically-synthesised, immunogenic molecules (COLSARSPROT) covering several HLA alleles. They were predicted to cover 48.25% of the world's population for 6 weeks (short-term) and 33.65% for 15 weeks (long-lasting) as they induced very high immunofluorescent antibody (IFA) and ELISA titres against S, M and E parental native peptides, SARS-CoV-2 neutralising antibodies and host cell infection. The same immunological methods that led to identifying new peptides for inclusion in the COLSARSPROT mixture were used for antigenicity studies. Peptides were analysed with serum samples from patients suffering mild or severe SARS-CoV-2 infection, thereby increasing chemically-synthesised peptides' potential coverage for the world populations up to 62.9%. These peptides' 3D structural analysis (by 1H-NMR acquired at 600 to 900 MHz) suggested structural-functional immunological association. This first multi-protein, multi-epitope, minimal subunit-based, chemically-synthesised, highly immunogenic peptide mixture highlights such chemical synthesis methodology's potential for rapidly obtaining very pure, highly reproducible, stable, cheap, easily-modifiable peptides for inducing immune protection against COVID-19, covering a substantial percentage of the human population.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Proteínas de la Envoltura de Coronavirus/inmunología , Proteínas M de Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de Subunidad/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Aotidae , COVID-19/prevención & control , Cadenas HLA-DRB1/genética , Humanos , Péptidos/inmunología , SARS-CoV-2/inmunología
6.
Life (Basel) ; 11(6)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207491

RESUMEN

Chagas disease is caused by the kinetoplastid parasite Trypanosoma cruzi, which is mainly transmitted by hematophagous insect bites. The parasite's lifecycle has an obligate intracellular phase (amastigotes), while metacyclic and bloodstream-trypomastigotes are its infective forms. Mammalian host cell recognition of the parasite involves the interaction of numerous parasite and host cell plasma membrane molecules and domains (known as lipid rafts), thereby ensuring internalization by activating endocytosis mechanisms triggered by various signaling cascades in both host cells and the parasite. This increases cytoplasmatic Ca2+ and cAMP levels; cytoskeleton remodeling and endosome and lysosome intracellular system association are triggered, leading to parasitophorous vacuole formation. Its membrane becomes modified by containing the parasite's infectious form within it. Once it has become internalized, the parasite seeks parasitophorous vacuole lysis for continuing its intracellular lifecycle, fragmenting such a vacuole's membrane. This review covers the cellular and molecular mechanisms involved in T. cruzi adhesion to, recognition of and internalization in host target cells.

7.
Vaccines (Basel) ; 8(4)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327628

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious viral disease, which has been reported for over 100 years, and against which the struggle has lasted for the same amount of time. It affects individuals from the order Artiodactyla, such as cattle, swine, sheep, wild animals from this order, and a few non-cloven hoofed species, such as mice and elephants. FMD causes large-scale economic losses for agricultural production systems; morbidity is almost 100% in an affected population, accompanied by a high mortality rate in young animals due to myocarditis or an inability to suckle if a mother is ill. The aetiological agent is an Aphthovirus from the family Picornaviridae, having seven serotypes: A, O, C, SAT1, SAT2, SAT3, and Asia 1. Serotype variability means that an immune response is serospecific and vaccines are thus designed to protect against each serotype independently. A host's adaptive immune response is key in defence against pathogens; however, this virus uses successful strategies (along with most microorganisms) enabling it to evade a host's immune system to rapidly and efficiently establish itself within such host, and thus remain there. This review has been aimed at an in-depth analysis of the immune response in cattle and swine regarding FMD virus, the possible evasion mechanisms used by the virus and describing some immunological differences regarding these species. Such aspects can provide pertinent knowledge for developing new FMD control and prevention strategies.

8.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126446

RESUMEN

The World Health Organisation (WHO) has placed twenty diseases into a group known as neglected tropical diseases (NTDs), twelve of them being parasitic diseases: Chagas' disease, cysticercosis/taeniasis, echinococcosis, food-borne trematodiasis, human African trypanosomiasis (sleeping sickness), leishmaniasis, lymphatic filariasis, onchocerciasis (river blindness), schistosomiasis, soil-transmitted helminthiasis (ascariasis, hookworm, trichuriasis), guinea-worm and scabies. Such diseases affect millions of people in developing countries where one of the main problems concerning the control of these diseases is diagnosis-based due to the most affected areas usually being far from laboratories having suitable infrastructure and/or being equipped with sophisticated equipment. Advances have been made during the last two decades regarding standardising and introducing techniques enabling diagnoses to be made in remote places, i.e., the loop-mediated isothermal amplification (LAMP) technique. This technique's advantages include being able to perform it using simple equipment, diagnosis made directly in the field, low cost of each test and the technique's high specificity. Using this technique could thus contribute toward neglected parasite infection (NPI) control and eradication programmes. This review describes the advances made to date regarding LAMP tests, as it has been found that even though several studies have been conducted concerning most NPI, information is scarce for others.


Asunto(s)
Técnicas de Diagnóstico Molecular/métodos , Enfermedades Desatendidas/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Parásitos/aislamiento & purificación , Enfermedades Parasitarias/diagnóstico , Sistemas de Atención de Punto , Animales , Humanos , Enfermedades Desatendidas/parasitología , Enfermedades Parasitarias/parasitología
9.
Dis Markers ; 2020: 8042705, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774514

RESUMEN

Schistosomiasis is considered a neglected parasitic disease. Around 280,000 people die from it annually, and more than 779 million people are at risk of getting infected. The schistosome species which infect human beings are Schistosoma mansoni, Schistosoma haematobium, Schistosoma intercalatum, Schistosoma japonicum, Schistosoma guineensis, and Schistosoma mekongi. This disease is also of veterinary significance; the most important species being Schistosoma bovis since it causes the disease in around 160 million livestock in Africa and Asia. This work was aimed at designing and developing a genus-specific loop-mediated isothermal amplification (LAMP) method for detecting the most important schistosome species affecting humans and for the species-specific detection of S. bovis. Bioinformatics tools were used for primer design, and the LAMP method was standardised for detecting the ITS-1 region from S. intercalatum, S. haematobium, S. mansoni, S. japonicum, and S. bovis DNA (generic test) and the NADH 1 gene for specifically detecting S. bovis (at different DNA concentrations). Detection limits achieved were 1 pg DNA for S. mansoni, 0.1 pg for S. haematobium, 1 pg for S. intercalatum, and 10 pg for S. bovis. No amplification for S. japonicum DNA was obtained. The LAMP designed for the amplification of S. bovis NADH-1 worked specifically for this species, and no other DNA from other schistosome species included in the study was amplified. Two highly sensitive LAMP methods for detecting different Schistosoma species important for human and veterinary health were standardised. These methods could be very useful for the diagnosis and surveillance of schistosome infections.


Asunto(s)
Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Schistosoma/genética , Esquistosomiasis/diagnóstico , Animales , Biología Computacional/métodos , ADN Protozoario/genética , Diagnóstico Precoz , Humanos , Límite de Detección , Técnicas de Diagnóstico Molecular/normas , Técnicas de Amplificación de Ácido Nucleico/normas , Schistosoma/clasificación , Schistosoma/aislamiento & purificación , Especificidad de la Especie
10.
Vaccine ; 38(23): 3942-3951, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32307277

RESUMEN

Foot-and-mouth disease (FMD) is one of the most contagious veterinary viral diseases known, having economic, social and potentially devastating environmental impacts. The vaccines currently being marketed/sold around the world for disease control and prevention in bovines do not stimulate the production of antibodies having crossed reactions to different serotypes. This means that if an animal becomes infected by a serotype which has not been included in a vaccine then it will develop the disease. Synthetic peptide vaccines represent a safer option and (depending on the design) can stimulate antibodies protecting against different variants. Based on the forgoing, this work was aimed at evaluating FMDV VP1, VP2 and VP3 protein-derived, modified and chemically-synthesised peptides' ability to induce an immune response for developing a vaccine contributing towards controlling the disease. VP1, VP2 and VP3 proteins' conserved regions were selected for this. Peptides from these regions were chemically synthesised; binding assays were then carried out for ascertaining whether they were involved in BHK-21 cell binding. Selected peptides' structure and location were studied. Peptides which did bind were modified and formulated with Montanide ISA 70 adjuvant; 17 animals were immunised twice with the formulation. The animals were genotyped by amplifying the BoLA-DRB3.2 gene. Blood samples were taken from 17 cattle on day 43 post-first immunisation for studying the formulation's immunogenicity. The sera were used in ELISA, immunofluorescence, flow cytometry, immunoadsorption and seroneutralisation assays. The A24 Cruzeiro and O1 Campos virus serotypes were used for these assays. The results revealed that even though protein exposure and 3D structure might be different amongst serotypes, the antibodies so produced could inhibit virus entry to cells, thereby showing the selected peptides' in vitro protection-inducing ability.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Péptidos , Vacunas Virales , Animales , Anticuerpos Antivirales , Proteínas de la Cápside/genética , Bovinos , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/inmunología
11.
Infect Genet Evol ; 76: 104034, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31521787

RESUMEN

Giardia duodenalis is one of the most prevalent human intestinal parasite, with children living in developing countries being particularly at risk of infection. The occurrence and molecular diversity of G. duodenalis was investigated in stools specimens from 307 individuals aged one to nineteen years in Colombia. Samples were collected in three educational establishments (n: 163) and two hospital laboratories (n: 144) from urban and rural areas. Feces were concentrated using a biphasic sedimentation method and wet mounts of the sediment were examined by light microscopy. G. duodenalis assemblages and sub-assemblages were determined on positive samples by PCR of the triose phosphate isomerase (tpi), ß-giardin (bg) and small-subunit (ssu) rRNA genes. G. duodenalis infection was detected by microscopy in 23 individuals (7.5%). The protozoan was more prevalent among specimens collected in educational establishments (11.6%) than in those obtained from hospital laboratories (2.8%). Infection was most common in individuals from urban areas and children aged 1-5 years. No significant association between diarrhea and infection could be demonstrated. Twenty Giardia-positive samples were successfully allocated to assemblage B (n: 11), sub-assemblage AII (n: 7), and assemblage A (n: 2). Results indicate the potential for transmission of G. duodenalis infection in children attending educational establishments and individuals from urban areas, where transmission seems to be primarily anthroponotic.


Asunto(s)
Infecciones Comunitarias Adquiridas/epidemiología , Infección Hospitalaria/epidemiología , Giardia lamblia/aislamiento & purificación , Giardiasis/epidemiología , Población Rural/estadística & datos numéricos , Población Urbana/estadística & datos numéricos , Adolescente , Niño , Preescolar , Colombia/epidemiología , Heces/parasitología , Femenino , Giardia lamblia/genética , Giardiasis/parasitología , Humanos , Lactante , Masculino , Prevalencia , Instituciones Académicas , Adulto Joven
12.
Acta Trop ; 192: 151-157, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30738722

RESUMEN

The intra-species genetic diversity of Cryptosporidium parvum in dairy cattle farms in the central area of Colombia was investigated using a multilocus fragment typing approach with nine variable-number tandem-repeat (VNTR) loci and the gp60 gene. Genomic DNA of 70 C. parvum isolates from pre-weaned calves in 32 farms was analysed. Most markers showed two (ML1, MSB, CP47, and MSC6-7) or three alleles (5B12, Cgd2_3850, and Cgd6_5400), although they exhibited a major allele accounting for more than 69% of specimens, which explains their low discriminatory index. The TP14 microsatellite was monomorphic while a total of six alleles were found at the ML2 microsatellite. The two novel allelic variants (219bp, 245bp) exhibited by more than 36% of specimens at the latter locus were a remarkable finding. The 10-markers typing tool provided a Hunter-Gaston discriminatory value of 0.940 (95% CI, 0.918 - 0.961) and differentiated 22 multilocus subtypes (MLTs). Nevertheless, the combination of the three most informative markers (ML2, gp60, and Cgd2_3850) differentiated 68% of MLTs and hardly impaired the discriminatory index. The fact that many MLTs (13/22) were distinctive for individual farms provides evidence for the endemic nature of the infection and the major role played by transmission within farms. The eBURST algorithm suggested a low degree of genetic divergence. All but three MLTs were clustered in a clonal complex with a star-like topology typical of clonal expansion, however linkage analysis did not find evidence of linkage disequilibrium. Bayesian analysis also identified a genetic structure with K = 3 being the best estimation of ancestral clusters, although a large proportion of isolates (35%) could not be allocated to a single population, which indicates their mixed origin. The results confirm the genetic distinctiveness of C. parvum in cattle farms in this geographical area. This is the first multilocus analysis on the intra-specific variability of Cryptosporidium from calves in South America.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/genética , Criptosporidiosis/epidemiología , Criptosporidiosis/genética , Cryptosporidium parvum/genética , Cryptosporidium parvum/aislamiento & purificación , Variación Genética , Animales , Teorema de Bayes , Bovinos , Colombia/epidemiología , Industria Lechera , Genotipo , Desequilibrio de Ligamiento , Repeticiones de Microsatélite , Repeticiones de Minisatélite
13.
J Immunol Res ; 2019: 3832513, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32083140

RESUMEN

Malaria continues being a high-impact disease regarding public health worldwide; the WHO report for malaria in 2018 estimated that ~219 million cases occurred in 2017, mostly caused by the parasite Plasmodium falciparum. The disease cost the lives of more than 400,000 people, mainly in Africa. In spite of great efforts aimed at developing better prevention (i.e., a highly effective vaccine), diagnosis, and treatment methods for malaria, no efficient solution to this disease has been advanced to date. The Fundación Instituto de Inmunología de Colombia (FIDIC) has been developing studies aimed at furthering the search for vaccine candidates for controlling P. falciparum malaria. However, vaccine development involves safety and immunogenicity studies regarding their formulation in animal models before proceeding to clinical studies. The present work has thus been aimed at evaluating the safety and immunogenicity of a mixture of 23 chemically synthesised, modified peptides (immune protection-inducing protein structure (IMPIPS)) derived from different P. falciparum proteins. Single and repeat dose assays were thus used with male and female BALB/c mice which were immunised with the IMPIPS mixture. It was found that single and repeat dose immunisation with the IMPIPS mixture was safe, both locally and systemically. It was observed that the antibodies so stimulated recognised the parasite's native proteins and inhibited merozoite invasion of red blood cells in vitro when evaluating the humoral immune response induced by the IMPIPS mixture. Such results suggested that the IMPIPS peptide mixture could be a safe candidate to be tested during the next stage involved in developing an antimalarial vaccine, evaluating local safety, immunogenicity, and protection in a nonhuman primate model.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Péptidos/inmunología , Plasmodium falciparum/inmunología , Animales , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Modelos Animales de Enfermedad , Femenino , Inmunización , Malaria/inmunología , Vacunas contra la Malaria/toxicidad , Masculino , Ratones , Ratones Endogámicos BALB C , Péptidos/síntesis química , Péptidos/química , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología
14.
Vaccine ; 36(45): 6703-6710, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30268732

RESUMEN

Cryptosporidium spp. is a zoonotic intracellular protozoan and a significant cause of diarrhoea in humans and animals worldwide. This parasite can cause high morbidity in immunocompromised people and children in developing countries, livestock being the main reservoir. This study was aimed at performing preliminary tests on Swiss albino weaned mice (ICR) to evaluate the humoral immune response induced against peptides derived from Cryptosporidium parvum CP15 (15 kDa sporozoite surface antigen) and CSL (circumsporozoite-like antigen) proteins. Peptides were identified and characterised using bioinformatics tools and were chemically synthesised. The antibody response was determined and the neutralising effect of antibodies was measured in cell culture. Despite all peptides studied here were capable of stimulating antibody production, neutralising antibodies were detected for just two of the CP15-derived ones. Additional studies aimed at evaluating further the potential of such peptides as vaccine candidates are thus recommended.


Asunto(s)
Antígenos de Protozoos/inmunología , Cryptosporidium parvum/inmunología , Vacunas Antiprotozoos/inmunología , Anticuerpos Antiprotozoarios/inmunología , ADN Protozoario/inmunología , Péptidos/síntesis química , Péptidos/química , Péptidos/inmunología , Proteínas Protozoarias/química , Proteínas Protozoarias/inmunología
15.
Parasitol Res ; 117(5): 1317-1323, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29484550

RESUMEN

Fecal specimens from 432 pre-weaned calves younger than 35 days were collected over a 2-year period (2010-2012) from 74 dairy cattle farms in the central area of Colombia. These samples were microscopically examined for the presence of Cryptosporidium oocysts, and positive specimens were selected for molecular examination. Microscopy revealed that 115 calves (26.6%) from 44 farms (59.5%) tested positive. Oocyst shedding was recorded in calves aged 3-day-old onwards, although the infection rate peaked at 8-14 days (40.7%). Infection rates were higher in diarrheic (52.2%) than in non-diarrheic calves (19.9%) (p < 0.0001, χ2), and infected calves had up to seven times more probability of having diarrhea than non-infected calves. Cryptosporidium species and subtypes were successfully identified in 73 samples from 32 farms. Restriction and sequence analyses of the SSU rRNA gene revealed C. parvum in all but two isolates identified as Cryptosporidium bovis. Sequence analyses of the 60-KDa glycoprotein (gp60) gene revealed eight subtypes within the IIa family. An unusual subtype (IIaA18G5R1) was the most prevalent and widely distributed (more than 66% specimens and 68% farms) while the subtype most frequently reported in cattle worldwide (IIaA15G2R1) was found in less than 13% of specimens and 16% farms. The remaining subtypes (IIaA16G2R1, IIaA17G4R1, IIaA20G5R1, IIaA19G6R1, IIaA20G6R1, and IIaA20G7R1) were restricted to 1-3 farms. This is the first large-sample size study of Cryptosporidium species and subtypes in Colombia and demonstrates the genetic uniqueness of this protozoan in cattle farms in this geographical area.


Asunto(s)
Enfermedades de los Bovinos/parasitología , Criptosporidiosis/epidemiología , Cryptosporidium parvum/aislamiento & purificación , Diarrea/veterinaria , Oocistos/genética , Animales , Bovinos , Colombia/epidemiología , Criptosporidiosis/parasitología , Cryptosporidium parvum/clasificación , Cryptosporidium parvum/genética , Industria Lechera , Diarrea/parasitología , Granjas , Heces/parasitología , Oocistos/clasificación , Oocistos/aislamiento & purificación , Prevalencia
16.
Appl Environ Microbiol ; 71(5): 2479-83, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15870337

RESUMEN

Two commercial peroxygen-based disinfectants containing hydrogen peroxide plus either peracetic acid (Ox-Virin) or silver nitrate (Ox-Agua) were tested for their ability to inactivate Cryptosporidium parvum oocysts. Oocysts were obtained from naturally infected goat kids and exposed to concentrations of 2, 5, and 10% Ox-Virin or 1, 3, and 5% Ox-Agua for 30, 60, and 120 min. In vitro excystation, vital dyes (4',6'-diamidino-2-phenylindole and propidium iodide), and infectivity in neonatal BALB/c mice were used to assess the viability and infectivity of control and disinfectant-treated oocysts. Both disinfectants had a deleterious effect on the survival of C. parvum oocysts, since disinfection significantly reduced and in some cases eliminated their viability and infectivity. When in vitro assays were compared with an infectivity assay as indicators of oocyst inactivation, the excystation assay showed 98.6% inactivation after treatment with 10% Ox-Virin for 60 min, while the vital-dye assay showed 95.2% inactivation and the infectivity assay revealed 100% inactivation. Treatment with 3% Ox-Agua for 30 min completely eliminated oocyst infectivity for mice, although we were able to observe only 74.7% inactivation as measured by excystation assays and 24.3% with vital dyes (which proved to be the least reliable method for predicting C. parvum oocyst viability). These findings indicate the potential efficacy of both disinfectants for C. parvum oocysts in agricultural settings where soil, housing, or tools might be contaminated and support the argument that in comparison to the animal infectivity assay, vital-dye and excystation methods overestimate the viability of oocysts following chemical disinfection.


Asunto(s)
Cryptosporidium parvum/efectos de los fármacos , Desinfectantes/farmacología , Peróxido de Hidrógeno/farmacología , Oocistos/efectos de los fármacos , Ácido Peracético/farmacología , Nitrato de Plata/farmacología , Animales , Desinfección , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...