Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Diabetes Metab Res Rev ; 40(4): e3811, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38751148

RESUMEN

AIMS: Individuals with type 1 diabetes (T1D) do not appear to have an elevated risk of severe Coronavirus Disease 19 (COVID-19). Pre-existing immune reactivity to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in unexposed individuals may serve as a protective factor. Hence, our study was designed to evaluate the existence of T cells with reactivity against SARS-CoV-2 antigens in unexposed patients with T1D. MATERIALS AND METHODS: Peripheral blood mononuclear cells (PBMCs) were collected from SARS-CoV-2 unexposed patients with T1D and healthy control subjects. SARS-CoV-2 specific T cells were identified in PBMCs by ex-vivo interferon (IFN)γ-ELISpot and flow cytometric assays. The epitope specificity of T cells in T1D was inferred through T Cell Receptor sequencing and GLIPH2 clustering analysis. RESULTS: T1D patients unexposed to SARS-CoV-2 exhibited higher rates of virus-specific T cells than controls. The T cells primarily responded to peptides from the ORF7/8, ORF3a, and nucleocapsid proteins. Nucleocapsid peptides predominantly indicated a CD4+ response, whereas ORF3a and ORF7/8 peptides elicited both CD4+ and CD8+ responses. The GLIPH2 clustering analysis of TCRß sequences suggested that TCRß clusters, associated with the autoantigens proinsulin and Zinc transporter 8 (ZnT-8), might share specificity towards ORF7b and ORF3a viral epitopes. Notably, PBMCs from three T1D patients exhibited T cell reactivity against both ORF7b/ORF3a viral epitopes and proinsulin/ZnT-8 autoantigens. CONCLUSIONS: The increased frequency of SAR-CoV-2- reactive T cells in T1D patients might protect against severe COVID-19 and overt infections. These results emphasise the long-standing association between viral infections and T1D.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 1 , SARS-CoV-2 , Humanos , Diabetes Mellitus Tipo 1/inmunología , SARS-CoV-2/inmunología , COVID-19/inmunología , Masculino , Femenino , Adulto , Linfocitos T/inmunología , Persona de Mediana Edad , Estudios de Casos y Controles , Epítopos de Linfocito T/inmunología , Adulto Joven
2.
Clin Chim Acta ; 557: 117863, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38471629

RESUMEN

BACKGROUND AND AIMS: Measuring 1,25-dihydroxyvitamin D (1,25(OH)2D), parathyroid hormone 1-84 (PTH 1-84) and intact FGF23 (iFGF23) is crucial for diagnosing a variety of diseases affecting bone and mineral homeostasis. Biological variability (BV) data are important for defining analytical quality specifications (APS), the usefulness of reference intervals, and the significance of variations in serial measurements in the same subject. The aim of this study was to pioneer the provision of BV estimates for 1,25(OH)2D and to improve existing BV estimates for iFGF23 and PTH 1-84. MATERIALS AND METHODS: Serum and plasma-EDTA samples of sixteen healthy subjects have been collected for seven weeks and measured in duplicate by chemiluminescent immunoassay on the DiaSorin Liaison platform. After variance verification, within-subject (CVI) and between-subject (CVG) BV estimates were assessed by either standard ANOVA, or CV-ANOVA. The APSs were calculated according to the EFLM-BV-model. RESULTS: We found the following CVI estimates with 95% confidence intervals:1,25(OH)2D, 22.2% (18.9-26.4); iFGF23, 16.1% (13.5-19.5); and PTH 1-84, 17.9% (14.8-21.8). The CVG were: 1,25(OH)2D, 21.2% (14.2-35.1); iFGF23, 21.1% (14.5-35.8); and PTH 1-84, 31.1% (22.1-50.8). CONCLUSIONS: We report for the first time BV estimates for 1,25(OH)2D and enhance existing data about iFGF23-BV and PTH 1-84-BV through cutting-edge immunometric methods.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , Vitamina D/análogos & derivados , Humanos , Hormona Paratiroidea , Voluntarios Sanos
3.
J Transl Med ; 22(1): 33, 2024 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-38185632

RESUMEN

BACKGROUND: The evolving variants of SARS-CoV-2 may escape immunity from prior infections or vaccinations. It's vital to understand how immunity adapts to these changes. Both infection and mRNA vaccination induce T cells that target the Spike protein. These T cells can recognize multiple variants, such as Delta and Omicron, even if neutralizing antibodies are weakened. However, the degree of recognition can vary among people, affecting vaccine efficacy. Previous studies demonstrated the capability of T-cell receptor (TCR) repertoire analysis to identify conserved and immunodominant peptides with cross-reactive potential among variant of concerns. However, there is a need to extend the analysis of the TCR repertoire to different clinical scenarios. The aim of this study was to examine the Spike-specific TCR repertoire profiles in natural infections and those with combined natural and vaccine immunity. METHODS: A T-cell enrichment approach and bioinformatic tools were used to investigate the Spike-specific TCRß repertoire in peripheral blood mononuclear cells of previously vaccinated (n = 8) or unvaccinated (n = 6) COVID-19 patients. RESULTS: Diversity and clonality of the TCRß repertoire showed no significant differences between vaccinated and unvaccinated groups. When comparing the TCRß data to public databases, 692 unique TCRß sequences linked to S epitopes were found in the vaccinated group and 670 in the unvaccinated group. TCRß clonotypes related to spike regions S135-177, S264-276, S319-350, and S448-472 appear notably more prevalent in the vaccinated group. In contrast, the S673-699 epitope, believed to have super antigenic properties, is observed more frequently in the unvaccinated group. In-silico analyses suggest that mutations in epitopes, relative to the main SARS-CoV-2 variants of concern, don't hinder their cross-reactive recognition by associated TCRß clonotypes. CONCLUSIONS: Our findings reveal distinct TCRß signatures in vaccinated and unvaccinated individuals with COVID-19. These differences might be associated with disease severity and could influence clinical outcomes. TRIAL REGISTRATION: FESR/FSE 2014-2020 DDRC n. 585, Action 10.5.12, noCOVID19@UMG.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Leucocitos Mononucleares , Epítopos , Receptores de Antígenos de Linfocitos T/genética
4.
PLoS One ; 18(12): e0293475, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38096163

RESUMEN

Emerging evidence shows that oral squamous cell carcinoma (OSCC) invasiveness can be attributed to a small subpopulation of cancer stem cells (CSCs) in the bulk of the tumor. However, the presence of CSCs in the OSCC close resection margins is still poorly unexplored. Here, we found that BMI1, CD44, SOX2, OCT4, UBE2C, CXCR4 CSCs marker genes are significantly upregulated, while IGF1-R, KLF4, ALDH1A1, CD133, FAM3C are downregulated in the tumor core vs healthy mucosa of 24 patients with OSCC. Among these, SOX2 appears also upregulated in the tumor close margin vs healthy mucosa and this significantly correlates with tumor size and lymph node compromise. In vitro analyses in CAL27 and SCC15 tongue squamous cell carcinoma cell lines, show that SOX2 transient knockdown i) promotes the mesenchymal-to-epithelial transition, ii) smooths the invasiveness, iii) attenuates the 3D tumor sphere-forming capacity, and iv) partially increases the sensitivity to cisplatin treatment. Overall, our study highlights that the OSCC close margins can retain CSC-specific markers. Notably, SOX2 may represent a useful CSCs marker to predict a more aggressive phenotype and a suitable target to prevent local invasiveness.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Neoplasias de la Lengua , Humanos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Neoplasias de la Boca/patología , Neoplasias de la Lengua/patología , Neoplasias de Cabeza y Cuello/patología , Células Madre Neoplásicas/metabolismo , Fenotipo , Línea Celular Tumoral , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Proteínas de Neoplasias/genética , Citocinas/metabolismo
5.
Front Cell Dev Biol ; 11: 1208485, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377735

RESUMEN

Introduction: The PD-1/PD-L1 axis is hijacked by lung adenocarcinoma (LUAD) cells to escape immune surveillance. PD-L1 expression in LUAD is affected, among others, by the metabolic trafficking between tumor cells and the tumor microenvironment (TME). Methods: Correlation between PD-L1 expression and iron content within the TME was established on FFPE LUAD tissue samples. The effects of an iron rich microenvironment on PD-L1 mRNA and protein levels were assessed in vitro in H460 and A549 LUAD by using qPCR, western blot and flow citometry. c-Myc knockdown was performed to validate the role of this transcription factor on PD-L1 expression. The effects of iron-induced PD-L1 on T cell immune function was assessed by quantifying IFN-γ release in a co-colture system. TCGA dataset was used to analyse the correlation between PD-L1 and CD71 mRNA expression in LUAD patients. Results: In this study, we highlight a significant correlation between iron density within the TME and PD-L1 expression in 16 LUAD tissue specimens. In agreement, we show that a more pronounced innate iron-addicted phenotype, indicated by a higher transferrin receptor CD71 levels, significantly correlates with higher PD-L1 mRNA expression levels in LUAD dataset obtained from TCGA database. In vitro, we demonstrate that the addition of Fe3+ within the culture media promotes the significant overexpression of PD-L1 in A549 and H460 LUAD cells, through the modulation of its gene transcription mediated by c-Myc. The effects of iron lean on its redox activity since PD-L1 up-regulation is counteracted by treatment with the antioxidant compound trolox. When LUAD cells are co-cultured with CD3/CD28-stimulated T cells in an iron-rich culture condition, PD-L1 up-regulation causes the inhibition of T-lymphocytes activity, as demonstrated by the significant reduction of IFN-γ release. Discussion: Overall, in this study we demonstrate that iron abundance within the TME may enhance PD-L1 expression in LUAD and, thus, open the way for the identification of possible combinatorial strategies that take into account the iron levels within the TME to improve the outcomes of LUAD patients treated with anti-PD-1/PD-L1-based therapies.

6.
J Exp Clin Cancer Res ; 42(1): 69, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36945054

RESUMEN

BACKGROUND: Metastases are the major cause of cancer-related morbidity and mortality. By the time cancer cells detach from their primary site to eventually spread to distant sites, they need to acquire the ability to survive in non-adherent conditions and to proliferate within a new microenvironment in spite of stressing conditions that may severely constrain the metastatic process. In this study, we gained insight into the molecular mechanisms allowing cancer cells to survive and proliferate in an anchorage-independent manner, regardless of both tumor-intrinsic variables and nutrient culture conditions. METHODS: 3D spheroids derived from lung adenocarcinoma (LUAD) and breast cancer cells were cultured in either nutrient-rich or -restricted culture conditions. A multi-omics approach, including transcriptomics, proteomics, and metabolomics, was used to explore the molecular changes underlying the transition from 2 to 3D cultures. Small interfering RNA-mediated loss of function assays were used to validate the role of the identified differentially expressed genes and proteins in H460 and HCC827 LUAD as well as in MCF7 and T47D breast cancer cell lines. RESULTS: We found that the transition from 2 to 3D cultures of H460 and MCF7 cells is associated with significant changes in the expression of genes and proteins involved in metabolic reprogramming. In particular, we observed that 3D tumor spheroid growth implies the overexpression of ALDOC and ENO2 glycolytic enzymes concomitant with the enhanced consumption of glucose and fructose and the enhanced production of lactate. Transfection with siRNA against both ALDOC and ENO2 determined a significant reduction in lactate production, viability and size of 3D tumor spheroids produced by H460, HCC827, MCF7, and T47D cell lines. CONCLUSIONS: Our results show that anchorage-independent survival and growth of cancer cells are supported by changes in genes and proteins that drive glucose metabolism towards an enhanced lactate production. Notably, this finding is valid for all lung and breast cancer cell lines we have analyzed in different nutrient environmental conditions. broader Validation of this mechanism in other cancer cells of different origin will be necessary to broaden the role of ALDOC and ENO2 to other tumor types. Future in vivo studies will be necessary to assess the role of ALDOC and ENO2 in cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Multiómica , Femenino , Humanos , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular , Glucosa , Lactatos , Nutrientes , Esferoides Celulares , Microambiente Tumoral
7.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361777

RESUMEN

The H Ferritin subunit (FTH1), as well as regulating the homeostasis of intracellular iron, is involved in complex pathways that might promote or inhibit carcinogenesis. This function may be mediated by its ability to interact with different molecules. To gain insight into the FTH1 interacting molecules, we analyzed its interactome in HEK293T cells. Fifty-one proteins have been identified, and among them, we focused our attention on a member of the peroxiredoxin family (PRDX6), an antioxidant enzyme that plays an important role in cell proliferation and in malignancy development. The FTH1/PRDX6 interaction was further supported by co-immunoprecipitation, in HEK293T and H460 cell lines and by means of computational methods. Next, we demonstrated that FTH1 could inhibit PRDX6-mediated proliferation and migration. Then, the results so far obtained suggested that the interaction between FTH1/PRDX6 in cancer cells might alter cell proliferation and migration, leading to a less invasive phenotype.


Asunto(s)
Apoferritinas , Peroxiredoxina VI , Humanos , Apoferritinas/genética , Peroxiredoxina VI/metabolismo , Células HEK293 , Proliferación Celular , Hierro/metabolismo
8.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34576263

RESUMEN

Breast cancer is the most frequent cancer in women worldwide and late diagnosis often adversely affects the prognosis of the disease. Radiotherapy is commonly used to treat breast cancer, reducing the risk of recurrence after surgery. However, the eradication of radioresistant cancer cells, including cancer stem cells, remains the main challenge of radiotherapy. Recently, lipid droplets (LDs) have been proposed as functional markers of cancer stem cells, also being involved in increased cell tumorigenicity. LD biogenesis is a multistep process requiring various enzymes, including Diacylglycerol acyltransferase 2 (DGAT2). In this context, we evaluated the effect of PF-06424439, a selective DGAT2 inhibitor, on MCF7 breast cancer cells exposed to X-rays. Our results demonstrated that 72 h of PF-06424439 treatment reduced LD content and inhibited cell migration, without affecting cell proliferation. Interestingly, PF-06424439 pre-treatment followed by radiation was able to enhance radiosensitivity of MCF7 cells. In addition, the combined treatment negatively interfered with lipid metabolism-related genes, as well as with EMT gene expression, and modulated the expression of typical markers associated with the CSC-like phenotype. These findings suggest that PF-06424439 pre-treatment coupled to X-ray exposure might potentiate breast cancer cell radiosensitivity and potentially improve the radiotherapy effectiveness.


Asunto(s)
Neoplasias de la Mama/radioterapia , Diacilglicerol O-Acetiltransferasa/metabolismo , Gotas Lipídicas/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Relación Dosis-Respuesta en la Radiación , Inhibidores Enzimáticos/farmacología , Transición Epitelial-Mesenquimal , Femenino , Regulación de la Expresión Génica , Humanos , Imidazoles/farmacología , Metabolismo de los Lípidos/fisiología , Lípidos , Células MCF-7 , Fenotipo , Piridinas/farmacología , Especies Reactivas de Oxígeno , Rayos X
9.
Elife ; 102021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499029

RESUMEN

Although much progress has been made in cancer treatment, the molecular mechanisms underlying cancer radioresistance (RR) as well as the biological signatures of radioresistant cancer cells still need to be clarified. In this regard, we discovered that breast, bladder, lung, neuroglioma, and prostate 6 Gy X-ray resistant cancer cells were characterized by an increase of lipid droplet (LD) number and that the cells containing highest LDs showed the highest clonogenic potential after irradiation. Moreover, we observed that LD content was tightly connected with the iron metabolism and in particular with the presence of the ferritin heavy chain (FTH1). In fact, breast and lung cancer cells silenced for the FTH1 gene showed a reduction in the LD numbers and, by consequence, became radiosensitive. FTH1 overexpression as well as iron-chelating treatment by Deferoxamine were able to restore the LD amount and RR. Overall, these results provide evidence of a novel mechanism behind RR in which LDs and FTH1 are tightly connected to each other, a synergistic effect that might be worth deeply investigating in order to make cancer cells more radiosensitive and improve the efficacy of radiation treatments.


Asunto(s)
Ferritinas/metabolismo , Gotas Lipídicas/efectos de la radiación , Neoplasias/metabolismo , Neoplasias/radioterapia , Oxidorreductasas/metabolismo , Línea Celular Tumoral , Ferritinas/genética , Humanos , Gotas Lipídicas/metabolismo , Neoplasias/genética , Oxidorreductasas/genética , Tolerancia a Radiación , Rayos X
10.
Cells ; 10(2)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540645

RESUMEN

New insights into the field of iron metabolism within the tumor microenvironment have been uncovered in recent years. Iron promotes the production of reactive oxygen species, which may either trigger ferroptosis cell death or contribute to malignant transformation. Once transformed, cancer cells divert tumor-infiltrating immune cells to satisfy their iron demand, thus affecting the tumor immunosurveillance. In this review, we highlight how the bioavailability of this metal shapes complex metabolic pathways within the tumor microenvironment and how this affects both tumor-associated macrophages and tumor-infiltrating lymphocytes functions. Furthermore, we discuss the potentials as well as the current clinical controversies surrounding the use of iron metabolism as a target for new anticancer treatments in two opposed conditions: i) the "hot" tumors, which are usually enriched in immune cells infiltration and are extremely rich in iron availability within the microenvironment, and ii) the "cold" tumors, which are often very poor in immune cells, mainly due to immune exclusion.


Asunto(s)
Ferroptosis/fisiología , Hierro/metabolismo , Neoplasias/genética , Microambiente Tumoral/inmunología , Humanos , Inmunidad
11.
Minerva Endocrinol (Torino) ; 46(2): 214-225, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32969628

RESUMEN

BACKGROUND: Despite the abundance of studies on the beneficial effects of a fiber rich diet as well as polyphenols deriving from Citrus fruits on postprandial serum glucose and insulin, clinical evidence on their synergic effects on healthy subjects have never been published. We aimed to investigate the feasibility of a new dietary approach in controlling glucose and insulin response at breakfast time by testing a brioche enriched with wheat bran and bergamot fiber. METHODS: We enrolled 11 healthy volunteers in a cross-over study. Participants consumed a classic brioche at breakfast and our functional brioche, containing wheat bran and bergamot fiber, on another day. Vital functions, biochemical parameters (including glucose and insulin), anthropometric measurements as well as resting energy expenditure and fat oxidation were evaluated before and after the intake of both meals. RESULTS: The mean age was ~25 years. The mean BMI was 23.5 kg/m2. The consumption of the functional brioche reduced the glucose Cmax(0-120 min) by ~6% and prevented the insulin increase over time by 30%, finally demonstrating insulin Cmax(0-120 min) and iAUC(0-120 min) values significantly lower compared to classic brioche (respectively P value =0.04 and 0.03). The stepwise multivariable analysis confirmed the association between the consumption of the functional brioche containing bran and bergamot fiber and glucose Cmax(0-120 min) (B=-0.45; P=0.034), and insulin iAUC(0-120 min) (B=-764 P=0.036). CONCLUSIONS: The association of wheat bran and bergamot fiber significantly influences glucose metabolism and may exert insulin-like effects on healthy volunteers. If confirmed, berga-brioche would be a useful tool in preventing diabetes and controlling the glycometabolic status of type 2 diabetic patients.


Asunto(s)
Desayuno , Insulina , Adulto , Glucemia , Estudios Cruzados , Fibras de la Dieta , Glucosa , Humanos , Proyectos Piloto
12.
Cells ; 9(6)2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32575749

RESUMEN

Ferroptosis is a new type of oxidative regulated cell death (RCD) driven by iron-dependent lipid peroxidation. As major sites of iron utilization and master regulators of oxidative metabolism, mitochondria are the main source of reactive oxygen species (ROS) and, thus, play a role in this type of RCD. Ferroptosis is, indeed, associated with severe damage in mitochondrial morphology, bioenergetics, and metabolism. Furthermore, dysregulation of mitochondrial metabolism is considered a biochemical feature of neurodegenerative diseases linked to ferroptosis. Whether mitochondrial dysfunction can, per se, initiate ferroptosis and whether mitochondrial function in ferroptosis is context-dependent are still under debate. Cancer cells accumulate high levels of iron and ROS to promote their metabolic activity and growth. Of note, cancer cell metabolic rewiring is often associated with acquired sensitivity to ferroptosis. This strongly suggests that ferroptosis may act as an adaptive response to metabolic imbalance and, thus, may constitute a new promising way to eradicate malignant cells. Here, we review the current literature on the role of mitochondria in ferroptosis, and we discuss opportunities to potentially use mitochondria-mediated ferroptosis as a new strategy for cancer therapy.


Asunto(s)
Muerte Celular/fisiología , Ferroptosis/fisiología , Hierro/metabolismo , Mitocondrias/metabolismo , Animales , Humanos , Neoplasias/patología , Especies Reactivas de Oxígeno/metabolismo
13.
Front Oncol ; 10: 698, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32432042

RESUMEN

The cell-microenvironment communication is essential for homing of hematopoietic stem cells in stromal niches. Recent evidences support the involvement of epithelial-to-mesenchymal (EMT) process in hematopoietic stem cell homeostasis as well as in leukemia cells invasiveness and migration capability. Here, we demonstrate that the alteration of iron homeostasis and the consequent increase of redox metabolism, mediated by the stable knock down of ferritin heavy chain (FtH), enhances the expression of CXCR4 in K562 erythroleukemia cells, thus promoting CXCL12-mediated motility. Indeed, addition of the CXCR4 receptor antagonist AMD3100 reverts this effect. Upon FtH knock down K562 cells also acquire an "EMT-like" phenotype, characterized by the increase of Snail, Slug and Vimentin with the parallel loss of E-cadherin. By using fibronectin as substrate, the cell adhesion assay further shows a reduction of cell adhesion capability in FtH-silenced K562 cells. Accordingly, confocal microscopy shows that adherent K562 control cells display a variety of protrusions while FtH-silenced K562 cells remain roundish. These phenomena are largely due to the reactive oxygen species (ROS)-mediated up-regulation of HIF-1α/CXCR4 axis which, in turn, promotes the activation of NF-κB and the enhancement of EMT features. These data are confirmed by treatments with either N-acetylcysteine (NAC) or AMD3100 or NF-κB inhibitor IκB-alpha which revert the FtH-silenced K562 invasive phenotype. Overall, our findings demonstrate the existence of a direct relationship among iron metabolism, redox homeostasis and EMT in the hematological malignancies. The effects of FtH dysregulation on CXCR4/CXCL12-mediated K562 cell motility extend the meaning of iron homeostasis in the leukemia cell microenvironment.

14.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235561

RESUMEN

The T cells are key players of the response to checkpoint blockade immunotherapy (CBI) and monitoring the strength and specificity of antitumor T-cell reactivity remains a crucial but elusive component of precision immunotherapy. The entire assembly of T-cell receptor (TCR) sequences accounts for antigen specificity and strength of the T-cell immune response. The TCR repertoire hence represents a "footprint" of the conditions faced by T cells that dynamically evolves according to the challenges that arise for the immune system, such as tumor neo-antigenic load. Hence, TCR repertoire analysis is becoming increasingly important to comprehensively understand the nature of a successful antitumor T-cell response, and to improve the success and safety of current CBI.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Humanos , Neoplasias/inmunología
15.
Oxid Med Cell Longev ; 2019: 3461251, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781333

RESUMEN

Reactive oxygen species (ROS) mediates cisplatin-induced cytotoxicity in tumor cells. However, when cisplatin-induced ROS do not reach cytotoxic levels, cancer cells may develop chemoresistance. This phenomenon can be attributed to the inherited high expression of antioxidant protein network. H-Ferritin is an important member of the antioxidant system due to its ability to store iron in a nontoxic form. Altered expression of H-Ferritin has been described in ovarian cancers; however, its functional role in cisplatin-based chemoresistance of this cancer type has never been explored. Here, we investigated whether the modulation of H-Ferritin might affect cisplatin-induced cytotoxicity in ovarian cancer cells. First, we characterized OVCAR3 and OVCAR8 cells for their relative ROS and H-Ferritin baseline amounts. OVCAR3 exhibited lower ROS levels compared to OVCAR8 and greater expression of H-Ferritin. In addition, OVCAR3 showed pronounced growth potential and survival accompanied by the strong activation of pERK/pAKT and overexpression of c-Myc and cyclin E1. When exposed to different concentrations of cisplatin, OVCAR3 were less sensitive than OVCAR8. At the lowest concentration of cisplatin (6 µM), OVCAR8 underwent a consistent apoptosis along with a downregulation of H-Ferritin and a consistent increase of ROS levels; on the other hand, OVCAR3 cells were totally unresponsive, H-Ferritin was almost unaffected, and ROS amounts met a slight increase. Thus, we assessed whether the modulation of H-Ferritin levels was able to affect the cisplatin-mediated cytotoxicity in both the cell lines. H-Ferritin knockdown strengthened cisplatin-mediated ROS increase and significantly restored sensitivity to 6 µM cisplatin in resistant OVCAR3 cells. Conversely, forced overexpression of H-Ferritin significantly suppressed the cisplatin-mediated elevation of intracellular ROS subsequently leading to a reduced responsiveness in OVCAR8 cells. Overall, our findings suggest that H-Ferritin might be a key protein in cisplatin-based chemoresistance and that its inhibition may represent a potential approach for enhancing cisplatin sensitivity of resistant ovarian cancer cells.


Asunto(s)
Apoferritinas/metabolismo , Cisplatino/farmacología , Citotoxinas/farmacología , Resistencia a Antineoplásicos , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Adulto , Anciano , Línea Celular Tumoral , Supervivencia sin Enfermedad , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Tasa de Supervivencia
16.
Sci Rep ; 9(1): 5668, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952937

RESUMEN

Remarkable deregulation of microRNAs has been demonstrated in epithelial ovarian cancer (EOC). In particular, some of the let-7 miRNA family members have been proposed as tumor suppressors. Here, we explored the functional roles of let-7g in EOC. The ectopic overexpression of let-7g in OVCAR3 and HEY-A8 EOC cells induced i) a down-regulation of c-Myc and cyclin-D2 thus promoting cell cycle arrest, ii) a reduction of Vimentin, Snail and Slug thus counteracting the progression of epithelial to mesenchymal transition, iii) a chemosensitization to cis-platinum treatment. Next, analysis of human EOC tissues revealed that let-7g expression was significantly reduced in tumor tissue specimens of patients with EOC compared to their non-tumor counterparts (p = 0.0002). Notably, low let-7g tissue levels were significantly associated with acquired chemoresistance of patients with late-stage of EOC (n = 17, p = 0.03194). This finding was further validated in the serum samples collected from the same cohort of patients (n = 17, p = 0.003). To conclude, we demonstrate that let-7g acts as tumor suppressor and might be used to disable EOC tumor progression and chemoresistance to cis-platinum-based chemotherapy. Furthermore, we propose that decreased expression of let-7g could serve as a tissue and serum biomarker able to predict the chemo-resistant features of EOC patients.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Epitelial de Ovario/genética , Resistencia a Antineoplásicos/genética , Genes Supresores de Tumor/fisiología , MicroARNs/genética , Neoplasias Ováricas/genética , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Persona de Mediana Edad , Neoplasias Glandulares y Epiteliales/genética
17.
Cell Death Dis ; 9(12): 1174, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518922

RESUMEN

Ferritin is a nanocage protein composed by the variable assembly of 24 heavy and light subunits. As major intracellular iron storage protein, ferritin has been studied for many years in the context of iron metabolism. However, recent evidences have highlighted its role, in particular that of the heavy subunit (FHC), in pathways related to cancer development and progression, such as cell proliferation, growth suppressor evasion, cell death inhibition, and angiogenesis. At least partly, the involvement in these pathways is due to the ability of FHC to control the expression of a repertoire of oncogenes and oncomiRNAs. Moreover, the existence of a feedback loop between FHC and the tumor suppressor p53 has been demonstrated in different cell types. Here, we show that ectopic over-expression of FHC induces the promoter hypermethylation and the down-regulation of miR-125b that, in turn, enhances p53 protein expression in non-small cell lung cancer (NSCLC) cell lines. Notably, analysis by absolute quantitative RT-PCR of FHC, miR-125b, and p53 strongly suggests that this axis might be active in human NSCLC tissue specimens. In vitro, FHC over-expression attenuates survival of NSCLC cells by inducing p53-mediated intrinsic apoptosis that is partially abrogated upon miR-125b re-expression. Overall, our findings demonstrate that FHC acts as a tumor suppressor gene, thus providing a potential molecular strategy for induction of NSCLC apoptotic cell death.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Apoferritinas/genética , Carcinoma de Células Grandes/genética , Carcinoma de Células Escamosas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , MicroARNs/genética , Proteína p53 Supresora de Tumor/genética , Células A549 , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Adulto , Anciano , Apoferritinas/metabolismo , Apoptosis/genética , Carcinoma de Células Grandes/metabolismo , Carcinoma de Células Grandes/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular , Retroalimentación Fisiológica , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
18.
Int J Mol Sci ; 19(10)2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30274235

RESUMEN

Nuclear Factor-κB (NF-κB) is frequently activated in tumor cells contributing to aggressive tumor growth and resistance to chemotherapy. Here we demonstrate that Ferritin Heavy Chain (FHC) protein expression inversely correlates with NF-κB activation in cancer cell lines. In fact, FHC silencing in K562 and SKOV3 cancer cell lines induced p65 nuclear accumulation, whereas FHC overexpression correlated with p65 nuclear depletion in the same cell lines. In FHC-silenced cells, the p65 nuclear accumulation was reverted by treatment with the reactive oxygen species (ROS) scavenger, indicating that NF-κB activation was an indirect effect of FHC on redox metabolism. Finally, FHC knock-down in K562 and SKOV3 cancer cell lines resulted in an improved cell viability following doxorubicin or cisplatin treatment, being counteracted by the transient expression of inhibitory of NF-κB, IκBα. Our results provide an additional layer of information on the complex interplay of FHC with cellular metabolism, and highlight a novel scenario of NF-κB-mediated chemoresistance triggered by the downregulation of FHC with potential therapeutic implications.


Asunto(s)
Apoferritinas/genética , Resistencia a Antineoplásicos , Silenciador del Gen , FN-kappa B/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Humanos , Células K562 , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción ReIA/metabolismo
19.
PLoS One ; 11(3): e0151359, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26982978

RESUMEN

Ferritin, the major iron storage protein, performs its essential functions in the cytoplasm, nucleus and mitochondria. The variable assembly of 24 subunits of the Heavy (H) and Light (L) type composes the cytoplasmic molecule. In humans, two distinct genes code these subunits, both belonging to complex multigene families. Until now, one H gene has been identified with the coding sequence interrupted by three introns and more than 20 intronless copies widely dispersed on different chromosomes. Two of the intronless genes are actively transcribed in a tissue-specific manner. Herein, we report that FTH1P3, another intronless pseudogene, is transcribed. FTH1P3 transcript was detected in several cell lines and tissues, suggesting that its transcription is ubiquitary, as it happens for the parental ferritin H gene. Moreover, FTH1P3 expression is positively regulated during the cell differentiation process.


Asunto(s)
Diferenciación Celular , Ferritinas/genética , Regulación de la Expresión Génica , Seudogenes , Transcripción Genética , Secuencia de Bases , Línea Celular , Humanos , Datos de Secuencia Molecular , Homología de Secuencia de Ácido Nucleico
20.
PLoS One ; 10(3): e0122105, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25815883

RESUMEN

In a previous study, we showed that the silencing of the heavy subunit (FHC) offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC) comparing it with K562 transduced with scrambled RNA (K562shRNA). Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, "Cell Death and Survival, Hematological System Development and Function, Hematopoiesis", is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs.


Asunto(s)
Apoferritinas/genética , Redes Reguladoras de Genes , MicroARNs/genética , Apoferritinas/metabolismo , Línea Celular Tumoral , Humanos , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Quinasas raf/genética , Quinasas raf/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...