Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 349: 112232, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39214468

RESUMEN

Three plant pathways for the synthesis of putrescine have been described to date. These are the synthesis of putrescine from ornithine, by ornithine decarboxylase (ODC); the synthesis of putrescine from arginine by arginine decarboxylase, agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase (NLP1); and arginine decarboxylase and agmatinase. To address how these pathways are organized in plants, we have used transient expression analysis of these genes in the leaves of Nicotiana benthamiana. Brassicas do not have ODC, but the single ODC gene from rice and one of the soybean genes, were localized to the ER. Transient expression of the rice agmatinase gene showed that it was localized to the mitochondria. In A. thaliana there are five isoforms of AIH and three isoforms of NLP1. Stable GFP-tagged transformants of the longest isoforms of AIH and NLP1 showed that both proteins were localized to the ER, but in tissues with chloroplasts, the localization was concentrated to lamellae adjacent to chloroplasts. Transient expression analyses showed that four of the isoforms of AIH and all of the isoforms of NLP1 were localized to the ER. However, AIH.4 was localized to the chloroplast. Combining these results with other published data, reveal that putrescine synthesis is excluded from the cytoplasm and is spatially localized to the chloroplast, ER, and likely the mitochondria. Synthesis of putrescine in the ER may facilitate cell to cell transport via plasmodesmata, or secretion via vesicles. Differential expression of these pathways may enable putrescine-mediated activation of hormone-responsive genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...