Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278573

RESUMEN

In the present study, we investigated the consequences of deleting the glutaredoxin-2 gene (Glrx2-/-) on the development of non-alcoholic fatty liver disease (NAFLD) in male and female C57BL6N mice fed a control (CD) or high-fat diet (HFD). We report that the HFD induced a significant increase in body mass in the wild-type (Wt) and Glrx2-/- male, but not female, mice, which was associated with the hypertrophying of the abdominal fat. Interestingly, while the Wt male mice fed the HFD developed NAFLD, the deletion of the Glrx2 gene mitigated vesicle formation, intrahepatic lipid accumulation, and fibrosis in the males. The protective effect associated with ablating the Glrx2 gene in male mice was due to enhancement of mitochondrial redox buffering capacity. Specifically, liver mitochondria from male Glrx2-/- fed a CD or HFD produced significantly less hydrogen peroxide (mtH2O2), had lower malondialdehyde levels, greater activities for glutathione peroxidase and thioredoxin reductase, and less protein glutathione mixed disulfides (PSSG) when compared to the Wt male mice fed the HFD. These effects correlated with the S-glutathionylation of α-ketoglutarate dehydrogenase (KGDH), a potent mtH2O2 source and key redox sensor in hepatic mitochondria. In comparison to the male mice, both Wt and Glrx2-/- female mice displayed almost complete resistance to HFD-induced body mass increases and the development of NAFLD, which was attributed to the superior redox buffering capacity of the liver mitochondria. Together, our findings show that modulation of mitochondrial S-glutathionylation signaling through Glrx2 augments resistance of male mice towards the development of NAFLD through preservation of mitochondrial redox buffering capacity. Additionally, our findings demonstrate the sex dimorphisms associated with the manifestation of NAFLD is related to the superior redox buffering capacity and modulation of the S-glutathionylome in hepatic mitochondria from female mice.

2.
Cell Rep ; 32(12): 108170, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32966787

RESUMEN

The replication cycle and pathogenesis of the Plasmodium malarial parasite involves rapid expansion in red blood cells (RBCs), and variants of certain RBC-specific proteins protect against malaria in humans. In RBCs, bisphosphoglycerate mutase (BPGM) acts as a key allosteric regulator of hemoglobin/oxyhemoglobin. We demonstrate here that a loss-of-function mutation in the murine Bpgm (BpgmL166P) gene confers protection against both Plasmodium-induced cerebral malaria and blood-stage malaria. The malaria protection seen in BpgmL166P mutant mice is associated with reduced blood parasitemia levels, milder clinical symptoms, and increased survival. The protective effect of BpgmL166P involves a dual mechanism that enhances the host's stress erythroid response to Plasmodium-driven RBC loss and simultaneously alters the intracellular milieu of the RBCs, including increased oxyhemoglobin and reduced energy metabolism, reducing Plasmodium maturation, and replication. Overall, our study highlights the importance of BPGM as a regulator of hemoglobin/oxyhemoglobin in malaria pathogenesis and suggests a new potential malaria therapeutic target.


Asunto(s)
Anemia/etiología , Anemia/prevención & control , Bisfosfoglicerato Mutasa/deficiencia , Malaria Cerebral/enzimología , Malaria Cerebral/prevención & control , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Bisfosfoglicerato Mutasa/química , Bisfosfoglicerato Mutasa/genética , Bisfosfoglicerato Mutasa/metabolismo , Estabilidad de Enzimas , Eritrocitos/enzimología , Eritrocitos/parasitología , Eritropoyesis , Matriz Extracelular/metabolismo , Femenino , Células HEK293 , Humanos , Malaria Cerebral/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación/genética , Parásitos/crecimiento & desarrollo , Plasmodium/crecimiento & desarrollo , Policitemia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...