Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38730845

RESUMEN

To address tooth enamel demineralization resulting from factors such as acid erosion, abrasion, and chronic illness treatments, it is important to develop effective daily dental care products promoting enamel preservation and surface remineralization. This study focused on formulating four toothpastes, each containing calcined synthetic hydroxyapatite (HAP) in distinct compositions, each at 4%, along with 1.3% birch extract. Substitution elements were introduced within the HAP structure to enhance enamel remineralization. The efficacy of each toothpaste formulation was evaluated for repairing enamel and for establishing the dynamic of the remineralization. This was performed by using an in vitro assessment of artificially demineralized enamel slices. The structural HAP features explored by XRD and enamel surface quality by AFM revealed notable restorative properties of these toothpastes. Topographic images and the self-assembly of HAP nanoparticles into thin films on enamel surfaces showcased the formulations' effectiveness. Surface roughness was evaluated through statistical analysis using one-way ANOVA followed by post-test Bonferroni's multiple comparison test with a p value < 0.05 significance setting. Remarkably, enamel nanostructure normalization was observed within a short 10-day period of toothpaste treatment. Optimal remineralization for all toothpastes was reached after about 30 days of treatment. These toothpastes containing birch extract also have a dual function of mineralizing enamel while simultaneously promoting enamel health and restoration.

2.
Materials (Basel) ; 16(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38005073

RESUMEN

This research work aims to develop functional toothpastes with combined enamel remineralization and antibacterial effects using nano-hydroxyapatites (nHAPs) and birch extract. Eleven toothpastes (notated as P1-P11) were designed featuring different concentrations of birch extract and a constant concentration of pure nHAPs or substituted nHAPs (HAP-5%Zn, HAP-0.23%Mg-3.9%Zn-2%Si-10%Sr, and HAP-2.5%Mg-2.9%Si-1.34%Zn). In vitro assessments involved treating artificially demineralized enamel slices and analyzing surface repair and remineralization using Atomic Force Microscopy (AFM). The Agar Disk Diffusion method was used to measure antibacterial activity against Enterococcus faecalis, Escherichia coli, Porphyromonas gingivalis, Streptococcus mutans, and Staphylococcus aureus. Topographic images of enamel structure and surface roughness, as well as the ability of nHAP nanoparticles to form self-assembled layers, revealed excellent restorative properties of the tested toothpastes, with enamel nanostructure normalization occurring as soon as 10 days after treatment. The outcomes highlighted enamel morphology improvements due to the toothpaste treatment also having various efficacious antibacterial effects. Promising results were obtained using P5 toothpaste, containing HAP-5%Zn (3.4%) and birch extract (1.3%), indicating notable remineralization and good antibacterial properties. This study represents a significant advancement in oral care by introducing toothpaste formulations that simultaneously promote enamel health through effective remineralization and bacterial inhibition.

3.
Materials (Basel) ; 15(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36556518

RESUMEN

The structural, morphological, and optical properties of Ni2+ ions substitution in CoCr2O4 matrix as ceramic pigments were investigated. The thermal decomposition of the dried gel was performed aiming to understand the mass changes during annealing. The X-ray diffraction (XRD) studies reveal a spinel-type Face-Centered Cubic structure and a secondary Cr2O3 phase when x ≤ 0.75 and a Body-Centered Tetragonal structure when x = 1. Fourier Transform Infrared Spectroscopy (FT-IR) indicated two strong absorption bands corresponding to the metal-oxygen stretching from tetrahedral and octahedral sites, characteristic of spinel structure. Ultraviolet-Visible (UV-Vis) spectra exhibited the electronic transitions of the Cr2+ Cr3+ and Ni2+ ions. From the UV-Vis data, the CIE color coordinates, (x, y) of the pigments were evaluated. The morphology was examined by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) showing the agglomeration behavior of the particles. The stability, coloring properties and potential ceramic applications of studied pigments were tested by their incorporation in matte and glossy tile glazes followed by the application of obtained glazes on ceramic tiles. This study highlights the change in pigment color (from turquoise to a yellowish green) with Ni2+ ions substitution in the CoCr2O4 spinel matrix.

4.
Molecules ; 27(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36296447

RESUMEN

Curcumin (CCM) is one of the most frequently explored plant compounds with various biological actions such as antibacterial, antiviral, antifungal, antineoplastic, and antioxidant/anti-inflammatory properties. The laboratory data and clinical trials have demonstrated that the bioavailability and bioactivity of curcumin are influenced by the feature of the curcumin molecular complex types. Curcumin has a high capacity to form molecular complexes with proteins (such as whey proteins, bovine serum albumin, ß-lactoglobulin), carbohydrates, lipids, and natural compounds (e.g., resveratrol, piperine, quercetin). These complexes increase the bioactivity and bioavailability of curcumin. The current review provides these derivatization strategies for curcumin in terms of biological and physico-chemical aspects with a strong focus on different type of proteins, characterization methods, and thermodynamic features of protein-curcumin complexes, and with the aim of evaluating the best performances. The current literature review offers, taking into consideration various biological effects of the CCM, a whole approach for CCM-biomolecules interactions such as CCM-proteins, CCM-nanomaterials, and CCM-natural compounds regarding molecular strategies to improve the bioactivity as well as the bioavailability of curcumin in biological systems.


Asunto(s)
Antineoplásicos , Curcumina , Curcumina/farmacología , Curcumina/química , Disponibilidad Biológica , Antioxidantes/farmacología , Antioxidantes/química , Resveratrol , Albúmina Sérica Bovina , Proteína de Suero de Leche , Quercetina , Antifúngicos , Antineoplásicos/farmacología , Lactoglobulinas/química , Lípidos , Antivirales , Carbohidratos , Antibacterianos
5.
Environ Sci Pollut Res Int ; 29(51): 77097-77112, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35676576

RESUMEN

The aims of this study were the preparation, characterization, and in vitro antibacterial activity evaluation of forsterite (FS, Mg2SiO4) nanopowder obtained by two major methods, namely sol-gel (FSsg) and co-precipitation (FSpp). The main aim was to determine the influence of preparation methodologies on physical properties and in vitro antibacterial activity of obtained forsterite nanopowder. To assess the best working temperature for the preparation of FSsg and FSpp, the synthesis and thermal treatment conditions were optimized on the basis of thermal gravimetric (TG) and differential scanning calorimetric (DSC) analysis performed on the dried gel and dried co-precipitated solid, respectively. The FSsg and FSpp powders were characterized by X-ray powder diffraction (XRD), indicating a high purity for both FSsg and FSpp powders. The morphology of FSsg and FSpp nanopowders was explored by scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). In vitro antibacterial activity was investigated using a targeted pathogen, namely Staphylococcus aureus (S. aureus) ATCC 6538 P as tested strain by broth dilution technique and inoculations on nutrient agar to highlight the bactericidal inhibitory effect. FSsg nanopowder has no inhibitory capacity, while FSpp produced inhibition, the effect being bactericidal at a concentration of 10 mg/mL. The superior bactericidal activity of FSpp against FSsg is due to variation in the own surface properties, such as specific surface area (SSA) and nano-regime particle size. The FSpp nanoparticles, NPs, obtained by co-precipitation method are reported for the first time as a novel bactericidal nanomaterial against S. aureus.


Asunto(s)
Compuestos de Silicona , Staphylococcus aureus , Agar , Antibacterianos/farmacología , Antibacterianos/química , Polvos , Compuestos de Silicona/química , Difracción de Rayos X , Nanoestructuras
6.
Aging (Albany NY) ; 12(7): 5612-5624, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32253367

RESUMEN

Replication Stress (RS) is a type of DNA damage generated at the replication fork, characterized by single-stranded DNA (ssDNA) accumulation, and which can be caused by a variety of factors. Previous studies have reported elevated RS levels in aged cells. In addition, mouse models with a deficient RS response show accelerated aging. However, the relevance of endogenous or physiological RS, compared to other sources of genomic instability, for the normal onset of aging is unknown. We have performed long term survival studies of transgenic mice with extra copies of the Chk1 and/or Rrm2 genes, which we previously showed extend the lifespan of a progeroid ATR-hypomorphic model suffering from high levels of RS. In contrast to their effect in the context of progeria, the lifespan of Chk1, Rrm2 and Chk1/Rrm2 transgenic mice was similar to WT littermates in physiological settings. Most mice studied died due to tumors -mainly lymphomas- irrespective of their genetic background. Interestingly, a higher but not statistically significant percentage of transgenic mice developed tumors compared to WT mice. Our results indicate that supraphysiological protection from RS does not extend lifespan, indicating that RS may not be a relevant source of genomic instability on the onset of normal aging.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Daño del ADN , Longevidad/genética , Ribonucleósido Difosfato Reductasa/genética , Animales , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Replicación del ADN , Ratones , Ratones Transgénicos , Ribonucleósido Difosfato Reductasa/metabolismo
7.
Cell Rep ; 24(12): 3274-3284, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30232008

RESUMEN

PICH is a DNA translocase necessary for the resolution of ultrafine anaphase DNA bridges and to ensure the fidelity of chromosomal segregation. Here, we report the generation of an animal model deficient for PICH that allowed us to investigate its physiological relevance. Pich KO mice lose viability during embryonic development due to a global accumulation of DNA damage. However, despite the presence of chromosomal instability, extensive p53 activation, and increased apoptosis throughout the embryo, Pich KO embryos survive until day 12.5 of embryonic development. The absence of p53 failed to improve the viability of the Pich KO embryos, suggesting that the observed developmental defects are not solely due to p53-induced apoptosis. Moreover, Pich-deficient mouse embryonic fibroblasts exhibit chromosomal instability and are resistant to RASV12/E1A-induced transformation. Overall, our data indicate that PICH is essential to preserve chromosomal integrity in rapidly proliferating cells and is therefore critical during embryonic development and tumorigenesis.


Asunto(s)
Inestabilidad Cromosómica , Desarrollo Embrionario/genética , Animales , Apoptosis , Células Cultivadas , Daño del ADN , ADN Helicasas/metabolismo , Ratones , Proteína p53 Supresora de Tumor/metabolismo
8.
Transgenic Res ; 26(3): 429-434, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28105543

RESUMEN

The generation of genetically engineered mouse models (GEMMs), including knock-out (KO) and knock-in (KI) models, often requires genomic screening of many mouse ES cell (mESC) clones by Southern blot. The use of large targeting constructs facilitates the recombination of exogenous DNA in a specific genomic locus, but limits the detection of its correct genomic integration by standard PCR methods. Genomic Long Range PCR (LR-PCR), using primers adjacent to the homology arms, has been used as an alternative to radioactive-based Southern blot screenings. However, LR-PCRs are often difficult and render many false positive and false negative results. Here, we propose an alternative screening method based on the detection of a genetic modification at the mRNA level, which we successfully optimized in two mouse models. This screening method consists of a reverse-transcription PCR (RT-PCR) using primers that match exons flanking the targeting construct. The detection of the expected modification in this PCR product confirms the integration at the correct genomic location and shows that the mutant mRNA is expressed. This is a simple and sensitive strategy to screen locus-specific recombination of targeting constructs which can also be useful to screen KO and KI mutant mice or cell lines including those generated by CRISPR/Cas9.


Asunto(s)
Células Madre Embrionarias/fisiología , Recombinación Genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Southern Blotting , Genes BRCA1 , Ratones Transgénicos
9.
Colloids Surf B Biointerfaces ; 135: 726-734, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26340362

RESUMEN

Green synthesis of gold nanoparticles capped with resveratrol (GNPs) and their physical and chemical characterization by UV-vis spectra, FTIR, DLS, XRD, TEM and AFM are reported. The GNPs are highly stable, with average diameter of about 20 nm. Then, supramolecular nanoassemblies of GNPs and doxorubicin (Dox), Dox-GNPs complexes, were prepared and morphologically characterized. The stability of these Dox nanocomplexes is high in phosphate buffer saline as estimated by UV-vis spectra, TEM and AFM analysis. Effects of resveratrol (Resv), Resv-Dox mixtures, GNPs and Dox-GNPs complexes on HeLa and CaSki cells, after 24h drug incubation, were assessed using MTT cell viability assay. Results showed strong anticancer activity for Resv-Dox mixtures and Dox-GNPs complexes in the two human cervical carcinoma cell lines. Clearly, both Resv and GNPs can mediate the anticancer activity of Dox at its very low concentration of 0.1 µg/mL, reaching the cytotoxicity of Dox alone, at its concentration up to 20 times higher. Cytotoxic effects of Resv-Dox mixtures and Dox-GNPs complexes have been found for the first time in HeLa and CaSki cells. Furthermore, the apoptosis induction in HeLa and CaSki cells was evidenced for Resv-Dox mixtures and Dox-GNPs complexes by flow cytometry using Annexin V-FITC/propidium iodide cellular staining. For CaSki cells, the apoptosis was also demonstrated, mainly for the treatment with Dox-GNPs complexes, by MTT formazan cellular staining visualized in phase contrast microscopy. Our results provide strong evidence that novel drug delivery vehicles developed on Dox-GNPs nanocomplexes and Resv could have wide applications in cancer diagnosis and treatment.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Oro/química , Nanopartículas del Metal , Estilbenos/farmacología , Neoplasias del Cuello Uterino/patología , Antibióticos Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Femenino , Humanos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Resveratrol , Análisis Espectral , Estilbenos/administración & dosificación , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA