Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38731626

RESUMEN

The current study comprehensively investigates the adsorption behavior of chromium (Cr(III)) in wastewater using Algerian kaolinite clay. The structural and textural properties of the kaolinite clay are extensively characterized through a range of analytical methods, including XRD, FTIR, SEM-EDS, XPS, laser granulometry, N2 adsorption isotherm, and TGA-DTA. The point of zero charge and zeta potential are also assessed. Chromium adsorption reached equilibrium within five minutes, achieving a maximum removal rate of 99% at pH 5. Adsorption equilibrium is modeled using the Langmuir, Freundlich, Temkin, Elovich, and Dubinin-Radushkevitch equations, with the Langmuir isotherm accurately describing the adsorption process and yielding a maximum adsorption capacity of 8.422 mg/g for Cr(III). Thermodynamic parameters suggest the spontaneous and endothermic nature of Cr(III) sorption, with an activation energy of 26.665 kJ/mol, indicating the importance of diffusion in the sorption process. Furthermore, advanced DFT computations, including COSMO-RS, molecular orbitals, IGM, RDG, and QTAIM analyses, are conducted to elucidate the nature of adsorption, revealing strong binding interactions between Cr(III) ions and the kaolinite surface. The integration of theoretical and experimental data not only enhances the understanding of Cr(III) removal using kaolinite but also demonstrates the effectiveness of this clay adsorbent for wastewater treatment. Furthermore, this study highlights the synergistic application of empirical research and computational modeling in elucidating complex adsorption processes.

2.
Materials (Basel) ; 16(23)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38068233

RESUMEN

In this work, a novel approach is suggested to grow bilayer fibers by combining electrospinning and atomic layer deposition (ALD). Polyvinyl alcohol (PVA) fibers are obtained by electrospinning and subsequently covered with thin Al2O3 deposited at a low temperature by ALD. To burn the PVA core, the fibrous structures are subjected to high-temperature annealing. Differential scanning calorimetry (DSC) analysis of the PVA mat is performed to establish the proper annealing regime for burning off the PVA core and obtaining hollow fibers. The hollow fibers thus formed are covered with a ZnO layer deposited by ALD at a higher temperature within the ALD window of ZnO. This procedure allows us to prepare ZnO films with better crystallinity and stoichiometry. Different characterization methods-SEM, ellipsometry, XRD, and XPS-are performed at each step to investigate the processes in detail.

3.
Materials (Basel) ; 16(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005118

RESUMEN

Different nano-sized phases were synthesized using chemical vapor deposition (CVD) processes. The deposition took place on {001} Si substrates at about 1150-1160 °C. The carbon source was thermally decomposed acetone (CH3)2CO in a main gas flow of argon. We performed experiments at two ((CH3)2CO + Ar)/Ar) ratios and observed that two visually distinct types of layers were deposited after a one-hour deposition process. The first layer type, which appears more inhomogeneous, has areas of SiO2 (about 5% of the surface area substrates) beside shiny bright and rough paths, and its Raman spectrum corresponds to diamond-like carbon, was deposited at a (CH3)2CO+Ar)/Ar = 1/5 ratio. The second layer type, deposited at (CH3)2CO + Ar)/Ar = a 1/0 ratio, appears homogeneous and is very dark brown or black in color and its Raman spectrum pointed to defect-rich multilayered graphene. The performed structural studies reveal the presence of diamond and diamond polytypes and seldom SiC nanocrystals, as well as some non-continuously mixed SiC and graphene-like films. The performed molecular dynamics simulations show that there is no possibility of deposition of sp3-hybridized on sp2-hybridized carbon, but there are completely realistic possibilities of deposition of sp2- on sp2- and sp3- on sp3-hybridized carbon under different scenarios.

4.
Materials (Basel) ; 16(19)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37834684

RESUMEN

The magneto-optical (MO) Kerr effects for ZnO and ZnO:Ni-doped nanolaminate structures prepared using atomic layer deposition (ALD) have been investigated. The chemical composition and corresponding structural and morphological properties were studied using XRD and XPS and compared for both nanostructures. The 2D array gradient maps of microscale variations of the Kerr angle polarization rotation were acquired by means of MO Kerr microscopy. The obtained data revealed complex behavior and broad statistical dispersion and showed distinct qualitative and quantitative differences between the undoped ZnO and ZnO:Ni-doped nanolaminates. The detected magneto-optical response is extensively inhomogeneous in ZnO:Ni films, and a giant Kerr polarization rotation angle reaching up to ~2° was established. This marks the prospects for further development of magneto-optical effects in ALD ZnO modified by transition metal oxide nanostructures.

5.
Materials (Basel) ; 16(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37241277

RESUMEN

The deposition of low-adhesive siloxane coatings is a current trend for the non-toxic control of bacterial growth and biofilm formation. Total elimination of biofilm formation has not been reported so far. The aim of this investigation was to study the ability of a non-toxic, natural, biologically active substance, such as fucoidan, to inhibit bacterial growth on similar medical coatings. The fucoidan amount was varied, and its impact on the bioadhesion-influencing surface characteristics, as well as on bacterial cell growth, was investigated. The inclusion of up to 3-4 wt.% brown algae-derived fucoidan in the coatings increases their inhibitory effect, more significantly on the Gram-positive bacterium S. aureus than on the Gram-negative bacterium Escherichia coli. The biological activity of the studied siloxane coatings was ascribed to the formation of a low-adhesive, biologically active surface top layer consisting of siloxane oil and dispersed water-soluble fucoidan particles. This is the first report on the antibacterial activity of fucoidan-containing medical siloxane coatings. The experimental results give reason to expect that relevantly selected, natural biologically active substances can be efficient in the non-toxic control of bacterial growth on medical devices and, as a result, medical device-associated infections.

6.
Nanomaterials (Basel) ; 13(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36903677

RESUMEN

In this paper, aluminum-doped zinc oxide (ZnO:Al or AZO) thin films are grown using atomic layer deposition (ALD) and the influence of postdeposition UV-ozone and thermal annealing treatments on the films' properties are investigated. X-ray diffraction (XRD) revealed a polycrystalline wurtzite structure with a preferable (100) orientation. The crystal size increase after the thermal annealing is observed while UV-ozone exposure led to no significant change in crystallinity. The results of the X-ray photoelectron spectroscopy (XPS) analyses show that a higher amount of oxygen vacancies exists in the ZnO:Al after UV-ozone treatment, and that the ZnO:Al, after annealing, has a lower amount of oxygen vacancies. Important and practical applications of ZnO:Al (such as transparent conductive oxide layer) were found, and its electrical and optical properties demonstrate high tunability after postdeposition treatment, particularly after UV-Ozone exposure, offers a noninvasive and easy way to lower the sheet resistance values. At the same time, UV-Ozone treatment did not cause any significant changes to the polycrystalline structure, surface morphology, or optical properties of the AZO films.

7.
J Chem Phys ; 158(6): 064706, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36792504

RESUMEN

The chemical interactions of two types of graphite and two types of carbon black (CB) with acetone, toluene, and phenol were studied in order to evaluate the influence of chemical treatment on the structure and morphology of the carbon phases. The experimental treatment of carbon phases was carried out at room temperature for 1 hour. The chemical and phase composition were studied by x-ray photoelectron (XP) and Raman spectroscopies, while the morphology and structure were determined by powder x-ray diffraction, as well as transmission electron microscopy techniques. To shed light on the most probable explanation of the observed results, we performed simulations and calculations of the binding energies of acetone, toluene, and phenol with model carbon phases: a perfect graphene sheet and a defective graphene sheet containing various structural defects (vacancies as well as zigzag and armchair edges). Simulations show that all non-covalent and most covalent coupling reactions are exothermic, with acetone coupling having the higher calorimetric effect. Based on the results of the simulations and the XP spectroscopy measurements, the probable reactions taking place during the respective treatments are outlined. The conducted studies (both theoretical and experimental) show that the treatment of graphite powders and CB with acetone, toluene, or phenol can be used as a preliminary stage of their modification and/or functionalization, including their conversion into graphene-like (defective graphene, reduced graphene oxide, and/or graphene oxide) phases. For example, the treatment of SPHERON 5000 with acetone significantly facilitates their subsequent modification with laser radiation to graphene-like phases.

8.
ACS Omega ; 7(47): 43306-43315, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36467919

RESUMEN

ZnO doped with transition metals (Co, Fe, or Ni) that have non-compensated electron spins attracts particular interest as it can induce various magnetic phenomena and behaviors. The advanced atomic layer deposition (ALD) technique makes it possible to obtain very thin layers of doped ZnO with controllable thicknesses and compositions that are compatible with the main microelectronic technologies, which further boosts the interest. The present study provides an extended analysis of the magneto-optical MO Kerr effect and the dielectric properties of (Co, Fe, or Ni)-doped ZnO films prepared by ALD. The structural, magneto-optical, and dielectric properties were considered in relation to the technological details of the ALD process and the corresponding dopant effects. All doped samples show a strong MO Kerr behavior with a substantial magnetization response and very high values of the Kerr polarization angle, especially in the case of ZnO/Fe. In addition, the results give evidence that Fe-doped ZnO also demonstrates a ferroelectric behavior. In this context, the observed rich and versatile physical nature and functionality open up new prospects for the application of these nanostructured materials in advanced electronic, spintronic, and optical devices.

9.
Materials (Basel) ; 15(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36431356

RESUMEN

The present study investigates the possibility of obtaining graphene-like phases (defected graphene, graphene oxide, and reduced graphene oxide) as fine suspensions by applying a novel pulsed laser ablation (PLA) approach in flow mode. Two types of suspensions of microcrystalline graphite in aqueous suspensions and two types of microcrystalline graphite in suspensions of 6% hydrogen peroxide solution were irradiated in a quartz tube through which they flow. The third (λ = 355 nm) and fourth harmonics (λ = 266 nm) of an Nd:YAG laser system (15 ns pulse duration and 10 Hz pulse repetition rate) were used. The morphology of the obtained particles was studied by transmission electron microscopy (TEM). Their phase composition and structure were explored by X-ray photoelectron spectroscopy, X-ray diffractometry, and Raman spectroscopy.

10.
Molecules ; 27(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35335154

RESUMEN

Graphene films were grown by chemical vapor deposition on Cu foil. The obtained samples were characterized by Raman spectroscopy, ellipsometry, X-ray photoelectron spectroscopy and electron back-scatter diffraction. We discuss the time-dependent changes in the samples, estimate the thickness of emerging Cu2O beneath the graphene and check the orientation-dependent affinity to oxidation of distinct Cu grains, which also governs the manner in which the initial strong Cu-graphene coupling and strain in the graphene lattice is released. Effects of electropolishing on the quality and the Raman response of the grown graphene layers are studied by microtexture polarization analysis. The obtained data are compared with the Raman signal of graphene after transfer on glass substrate revealing the complex interaction of graphene with the Cu substrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...