Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
PLoS One ; 19(7): e0305623, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968295

RESUMEN

BACKGROUND: Development of reliable disease activity biomarkers is critical for diagnostics, prognostics, and novel drug development. Although computed tomography (CT) is the gold-standard for quantification of bone erosions, there are no consensus approaches or rationales for utilization of specific outcome measures of erosive arthritis in complex joints. In the case of preclinical models, such as sexually dimorphic tumor necrosis factor transgenic (TNF-Tg) mice, disease severity is routinely quantified in the ankle through manual segmentation of the talus or small regions of adjacent bones primarily due to the ease in measurement. Herein, we sought to determine the particular hindpaw bones that represent reliable biomarkers of sex-dependent disease progression to guide future investigation and analysis. METHODS: Hindpaw micro-CT was performed on wild-type (n = 4 male, n = 4 female) and TNF-Tg (n = 4 male, n = 7 female) mice at monthly intervals from 2-5 (females) and 2-8-months (males) of age, since female TNF-Tg mice exhibit early mortality from cardiopulmonary disease at approximately 5-6-months. Further, 8-month-old WT (n = 4) and TNF-Tg males treated with anti-TNF monoclonal antibodies (n = 5) or IgG placebo isotype controls (n = 6) for 6-weeks were imaged with micro-CT every 3-weeks. For image analysis, we utilized our recently developed high-throughput and semi-automated segmentation strategy in Amira software. Synovial and osteoclast histology of ankle joints was quantified using Visiopharm. RESULTS: First, we demonstrated that the accuracy of automated segmentation, determined through analysis of ~9000 individual bones by a single user, was comparable in wild-type and TNF-Tg hindpaws before correction (79.2±8.9% vs 80.1±5.1%, p = 0.52). Compared to other bone compartments, the tarsal region demonstrated a sudden, specific, and significant bone volume reduction in female TNF-Tg mice, but not in males, by 5-months (4-months 4.3± 0.22 vs 5-months 3.4± 0.62 mm3, p<0.05). Specifically, the cuboid showed significantly reduced bone volumes at early timepoints compared to other tarsals (i.e., 4-months: Cuboid -24.1±7.2% vs Talus -9.0±5.9% of 2-month baseline). Additional bones localized to the anterolateral region of the ankle also exhibited dramatic erosions in the tarsal region of females, coinciding with increased synovitis and osteoclasts. In TNF-Tg male mice with severe arthritis, the talus and calcaneus exhibited the most sensitive response to anti-TNF therapy measured by effect size of bone volume change over treatment period. CONCLUSIONS: We demonstrated that sexually dimorphic changes in arthritic hindpaws of TNF-Tg mice are bone-specific, where the cuboid serves as a reliable early biomarker of erosive arthritis in female mice. Adoption of automated segmentation approaches in pre-clinical or clinical models has potential to translate quantitative biomarkers to monitor bone erosions in disease and evaluate therapeutic efficacy.


Asunto(s)
Biomarcadores , Ratones Transgénicos , Factor de Necrosis Tumoral alfa , Microtomografía por Rayos X , Animales , Femenino , Masculino , Ratones , Microtomografía por Rayos X/métodos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Modelos Animales de Enfermedad , Factores Sexuales , Ratones Endogámicos C57BL , Caracteres Sexuales
2.
Foot Ankle Int ; 45(3): 279-290, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38240174

RESUMEN

BACKGROUND: The purpose of this study is to investigate the biomechanical effect of medial displacement calcaneal osteotomy (MDCO), subtalar joint fusion (SF), and medial ligament reconstruction (MLR: deltoid-spring ligament) in a severe flatfoot model. We hypothesized that (1) combination of MDCO and SF improves the tibiotalar and foot alignment in severe progressive collapsing foot deformity (PCFD) cadaver model. (2) However, if a residual valgus heel alignment remains after MCDO and SF, it can lead to increased medial ligament strain, foot malalignment, and tibiotalar valgus tilt, which will be mitigated by the addition of MLR. METHODS: Ten fresh-frozen cadaveric foot specimens were used to create a severe flatfoot model. The foot alignment changes, including the talo-first metatarsal angle in the axial and sagittal planes, subtalar angle, and tibiotalar angle in the coronal plane, were measured. The angles were measured at the initial condition, after creating the severe flatfoot model, and after each successive reconstructive procedure in the following order: (1) MDCO, (2) SF, and (3) MLR. RESULTS: Tibiotalar valgus tilt was decreased with the MDCO procedure: 4.4 vs 1.0 degrees (P = .04). Adding in situ SF to the MDCO led to increased tibiotalar tilt to 2.5 degrees was different from the initial condition (P = .01). Although the tibiotalar valgus tilt was significantly decreased after adding the MLR to the MDCO/SF procedure compared with the severe flatfoot model (0.8 vs 4.4 degrees, P = .03), no significant difference in the tibiotalar valgus tilt was observed between MDCO/SF and MDCO/SF with MLR. CONCLUSION: Our results demonstrated that MDCO significantly improved forefoot abduction and medial arch alignment, with no significant additional improvement observed with addition of SF. Following SF, a residual valgus heel alignment can contribute to subsequent tibiotalar valgus tilt. The addition of MLR did not show significantly decreased tibiotalar valgus tilt following SF. CLINICAL RELEVANCE: Residual valgus heel alignment after subtalar joint fusion in the surgical treatment of PCFD can lead to increased medial ligament strain. Although MLR might be considered for providing medial stability, it may not necessarily prevent the development of tibiotalar valgus tilt.


Asunto(s)
Pie Plano , Deformidades del Pie , Articulación Talocalcánea , Humanos , Pie Plano/cirugía , Articulación Talocalcánea/cirugía , Pie , Ligamentos Articulares/cirugía
3.
J Biomech ; 161: 111852, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924650

RESUMEN

While osteoporosis is reliably diagnosed using dual energy X-ray absorptiometry (DXA), screening rates are alarmingly low, contributing to preventable fractures. Raman spectroscopy (RS) can detect biochemical changes that occur in bones transcutaneously and can arguably be more accessible than DXA as a fracture risk assessment. A reasonable approach to translate RS is to interrogate phalangeal bones of human hands, where the soft tissues covering the bone are less likely to hamper transcutaneous measurements. To that end, we set out to first determine whether Raman spectra obtained from phalangeal bones correlate with distal radius fracture strength, which can predict subsequent osteoporotic fractures at the spine and hip. We performed RS upon diaphyseal and epiphyseal regions of exposed proximal phalanges from 12 cadaver forearms classified as healthy (n = 3), osteopenic (n = 4), or osteoporotic (n = 5) based on wrist T-scores measured by DXA. We observed a significant decrease in phosphate to matrix ratio and a significant increase in carbonate substitution in the osteoporotic phalanges relative to healthy and osteopenic phalanges. Multivariate regression models produced wrist T-score estimates with significant correlation to the DXA-measured values (r = 0.79). Furthermore, by accounting for phalangeal RS parameters, body mass index, and age, a multivariate regression significantly predicted distal radius strength measured in a simulated-fall biomechanical test (r = 0.81). These findings demonstrate the feasibility of interrogating the phalanges using RS for bone quality assessment of distant clinical sites of fragility fractures, such as the wrist. Future work will address transcutaneous measurement challenges as another requirement for scale-up and translation.


Asunto(s)
Falanges de los Dedos de la Mano , Fracturas Osteoporóticas , Humanos , Radio (Anatomía) , Absorciometría de Fotón/métodos , Antebrazo , Cadáver , Densidad Ósea
4.
J Orthop Res ; 41(10): 2133-2162, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37573480

RESUMEN

Several tendon and ligament animal models were presented at the 2022 Orthopaedic Research Society Tendon Section Conference held at the University of Pennsylvania, May 5 to 7, 2022. A key objective of the breakout sessions at this meeting was to develop guidelines for the field, including for preclinical tendon and ligament animal models. This review summarizes the perspectives of experts for eight surgical small and large animal models of rotator cuff tear, flexor tendon transection, anterior cruciate ligament tear, and Achilles tendon injury using the framework: "Why, Who, What, Where, When, and How" (5W1H). A notable conclusion is that the perfect tendon model does not exist; there is no single gold standard animal model that represents the totality of tendon and ligament disease. Each model has advantages and disadvantages and should be carefully considered in light of the specific research question. There are also circumstances when an animal model is not the best approach. The wide variety of tendon and ligament pathologies necessitates choices between small and large animal models, different anatomic sites, and a range of factors associated with each model during the planning phase. Attendees agreed on some guiding principles including: providing clear justification for the model selected, providing animal model details at publication, encouraging sharing of protocols and expertise, improving training of research personnel, and considering greater collaboration with veterinarians. A clear path for translating from animal models to clinical practice was also considered as a critical next step for accelerating progress in the tendon and ligament field.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Lesiones del Manguito de los Rotadores , Traumatismos de los Tendones , Animales , Tendones , Ligamento Cruzado Anterior/cirugía
5.
J Orthop Res ; 41(10): 2105-2113, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37312619

RESUMEN

Tendons are critical for the biomechanical function of joints. Tendons connect muscles to bones and allow for the transmission of muscle forces to facilitate joint motion. Therefore, characterizing the tensile mechanical properties of tendons is important for the assessment of functional tendon health and efficacy of treatments for acute and chronic injuries. In this guidelines paper, we review methodological considerations, testing protocols, and key outcome measures for mechanical testing of tendons. The goal of the paper is to present a simple set of guidelines to the nonexpert seeking to perform tendon mechanical tests. The suggested approaches provide rigorous and consistent methodologies for standardized biomechanical characterization of tendon and reporting requirements across laboratories.


Asunto(s)
Músculos , Tendones , Fenómenos Biomecánicos , Tendones/fisiología , Resistencia a la Tracción , Pruebas Mecánicas
6.
Cureus ; 15(4): e38257, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37252568

RESUMEN

INTRODUCTION: Revision total hip arthroplasty in the setting of acetabular bone loss remains a challenging clinical entity. Deficiencies of the acetabular rim, walls, and/or columns may limit the bony surface area and initial acetabular construct stability necessary for osseointegration of cementless components. Press-fit acetabular components with supplemental acetabular screw fixation represent a common technique aimed to minimize implant micromotion and allow for definitive osseointegration. Although acetabular screw fixation is commonly practiced in revision hip arthroplasty, few studies to date have examined the screw properties associated with maximal acetabular construct stability. The purpose of the present report is to examine acetabular screw fixation in a pelvis model mimicking Paprosky IIB acetabular bone loss. METHODS: Measuring bone-implant interface micromotion as a surrogate for initial implant stability, experimental models assessed the effect of screw number, screw length, and screw position on construct stability subject to a cyclic loading protocol designed to replicate joint reaction forces of two common daily activities. RESULTS: Trends towards increasing stability were demonstrated with increasing screw number, increasing screw length, and concentrating screws in the supra-acetabular dome. All experimental constructs yielded micromotion levels sufficient for bone ingrowth, except when screws in the dome were moved to the pubis and ischium. CONCLUSIONS: When using a porous coated revision acetabular implant to treat Paprosky IIB defects, screws should be used, and furthermore, increasing number, length, and position within the acetabular dome may help further stabilize the construct.

7.
J Orthop Res ; 41(10): 2163-2174, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37143206

RESUMEN

Transforming growth factor-beta (TGF-ß1) induces plasminogen activator inhibitor 1 (PAI-1) to effect fibrotic pathologies in several organs including tendon. Recent data implicated PAI-1 with inhibition of phosphatase and tensin homolog (PTEN) suggesting that PAI-1-induced adhesions involves phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) signaling. Ergo, we investigated effects of TGF-ß1, PAI-1, and mTOR signaling crosstalk on myofibroblast activation, senescence, and proliferation in primary flexor tenocytes from wild-type (WT) and PAI-1 knockout (KO) mice. PAI-1 deletion blunted TGF-ß1-induced myofibroblast activation in murine flexor tenocytes and increased the gene expression of Mmp-2 to confer protective effects against fibrosis. While TGF-ß1 significantly reduced phosphorylation of PTEN in WT cells, PAI-1 deletion rescued the activation of PTEN. Despite that, there were no differences in TGF-ß1-induced activation of mTOR signaling (AKT, 4EBP1, and P70S6K) in WT or KO tenocytes. Phenotypic changes in distinct populations of WT or KO tenocytes exhibiting high or low mTOR activity were then examined. TGF-ß1 increased alpha-smooth muscle actin abundance in WT cells exhibiting high mTOR activity, but this increase was blunted in KO cells exhibiting high 4EBP1 activity but not in cells exhibiting high S6 activity. DNA damage (γH2AX) was increased with TGF-ß1 treatment in WT tenocytes but was blunted in KO cells exhibiting high mTOR activity. Increased mTOR activity enhanced proliferation (Ki67) in both WT and KO tenocytes. These findings point to a complex nexus of TGF-ß1, PAI-1, and mTOR signaling in regulating proliferation, myofibroblast differentiation, and senescence in tenocytes, which could define therapeutic targets for chronic tendon adhesions and other fibrotic pathologies.


Asunto(s)
Inhibidor 1 de Activador Plasminogénico , Factor de Crecimiento Transformador beta1 , Animales , Ratones , Mamíferos/metabolismo , Miofibroblastos , Fosfatidilinositol 3-Quinasas , Tenocitos/metabolismo , Serina-Treonina Quinasas TOR , Factor de Crecimiento Transformador beta1/metabolismo
8.
J Bone Miner Res ; 38(4): 522-540, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36779737

RESUMEN

The mitochondrial permeability transition pore (MPTP) and its positive regulator, cyclophilin D (CypD), play important pathophysiological roles in aging. In bone tissue, higher CypD expression and pore activity are found in aging; however, a causal relationship between CypD/MPTP and bone degeneration needs to be established. We previously reported that CypD expression and MPTP activity are downregulated during osteoblast (OB) differentiation and that manipulations in CypD expression affect OB differentiation and function. Using a newly developed OB-specific CypD/MPTP gain-of-function (GOF) mouse model, we here present evidence that overexpression of a constitutively active K166Q mutant of CypD (caCypD) impairs OB energy metabolism and function, and bone morphological and biomechanical parameters. Specifically, in a spatial-dependent and sex-dependent manner, OB-specific CypD GOF led to a decrease in oxidative phosphorylation (OxPhos) levels, higher oxidative stress, and general metabolic adaptations coincident with the decreased bone organic matrix content in long bones. Interestingly, accelerated bone degeneration was present in vertebral bones regardless of sex. Overall, our work confirms CypD/MPTP overactivation as an important pathophysiological mechanism leading to bone degeneration and fragility in aging. © 2023 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Ratones , Animales , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Peptidil-Prolil Isomerasa F , Envejecimiento
9.
Res Sq ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168335

RESUMEN

Understanding vascular inflammation and myofibroblast crosstalk is critical to developing therapies for fibrotic diseases. Here we report the development of a novel human Tendon-on-a-Chip (hToC) to model this crosstalk in peritendinous adhesions, a debilitating fibrotic condition affecting flexor tendon, which currently lacks biological therapies. The hToC enables cellular and paracrine interactions between a vascular compartment harboring endothelial cells and monocytes with a tissue hydrogel compartment containing tendon fibroblasts and macrophages. We find that the hToC replicates in vivo inflammatory and fibrotic phenotypes in preclinical and clinical samples, including myofibroblast differentiation and tissue contraction, excessive ECM deposition, and inflammatory cytokines secretion. We further show that the fibrotic phenotypes are driven by the transmigration of monocytes from the vascular to the tissue compartments of the chip. We demonstrate significant overlap in fibrotic transcriptional signatures in the hToC with human tenolysis samples, including mTOR signaling, a regulatory nexus of fibrosis across various organs. Treatment with rapamycin suppressed the fibrotic phenotype on the hToC, which validates the hToC as a preclinical alternative for investigating fibrosis and testing therapeutics.

10.
Front Med Technol ; 4: 979768, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483299

RESUMEN

The vascular system plays a critical role in the progression and resolution of inflammation. The contributions of the vascular endothelium to these processes, however, vary with tissue and disease state. Recently, tissue chip models have emerged as promising tools to understand human disease and for the development of personalized medicine approaches. Inclusion of a vascular component within these platforms is critical for properly evaluating most diseases, but many models to date use "generic" endothelial cells, which can preclude the identification of biomedically meaningful pathways and mechanisms. As the knowledge of vascular heterogeneity and immune cell trafficking throughout the body advances, tissue chip models should also advance to incorporate tissue-specific cells where possible. Here, we discuss the known heterogeneity of leukocyte trafficking in vascular beds of some commonly modeled tissues. We comment on the availability of different tissue-specific cell sources for endothelial cells and pericytes, with a focus on stem cell sources for the full realization of personalized medicine. We discuss sources available for the immune cells needed to model inflammatory processes and the findings of tissue chip models that have used the cells to studying transmigration.

11.
Antibiotics (Basel) ; 11(10)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36290009

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a global healthcare concern. Such resistance has historically been attributed to the acquisition of mecA (or mecC), which encodes an alternative penicillin binding protein, PBP2a, with low ß-lactam affinity. However, recent studies have indicated that penicillin binding protein 4 (PBP4) is also a critical determinant of S. aureus methicillin resistance, particularly among community-acquired MRSA strains. Thus, PBP4 has been considered an intriguing therapeutic target as corresponding inhibitors may restore MRSA ß-lactam susceptibility. In addition to its role in antibiotic resistance, PBP4 has also recently been shown to be required for S. aureus cortical bone osteocyte lacuno-canalicular network (OLCN) invasion and colonization, providing the organism with a niche for re-occurring bone infection. From these perspectives, the development of PBP4 inhibitors may have tremendous impact as agents that both reverse methicillin resistance and inhibit the organism's ability to cause chronic osteomyelitis. Accordingly, using a whole-cell high-throughput screen of a 30,000-member small molecule chemical library and secondary assays we identified putative S. aureus PBP4 inhibitors. Quantitative reverse transcriptase mediated PCR and PBP4 binding assays revealed that hits could be further distinguished as compounds that reduce PBP4 expression versus compounds that are likely to affect the protein's function. We also showed that 6.25 µM (2.5 µg/mL) of the lead candidate, 9314848, reverses the organism's PBP4-dependent MRSA phenotype and inhibits its ability to traverse Microfluidic-Silicon Membrane-Canalicular Arrays (µSiM-CA) that model the OLCN orifice. Collectively, these molecules may represent promising potential as PBP4-inhibitors that can be further developed as adjuvants for the treatment of MRSA infections and/or osteomyelitis prophylactics.

12.
Elife ; 112022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35635445

RESUMEN

Cyclophilin D (CypD) promotes opening of the mitochondrial permeability transition pore (MPTP) which plays a key role in both cell physiology and pathology. It is, therefore, beneficial for cells to tightly regulate CypD and MPTP but little is known about such regulation. We have reported before that CypD is downregulated and MPTP deactivated during differentiation in various tissues. Herein, we identify BMP/Smad signaling, a major driver of differentiation, as a transcriptional regulator of the CypD gene, Ppif. Using osteogenic induction of mesenchymal lineage cells as a BMP/Smad activation-dependent differentiation model, we show that CypD is in fact transcriptionally repressed during this process. The importance of such CypD downregulation is evidenced by the negative effect of CypD 'rescue' via gain-of-function on osteogenesis both in vitro and in a mouse model. In sum, we characterized BMP/Smad signaling as a regulator of CypD expression and elucidated the role of CypD downregulation during cell differentiation.


Asunto(s)
Proteínas Morfogenéticas Óseas , Poro de Transición de la Permeabilidad Mitocondrial , Osteogénesis , Peptidil-Prolil Isomerasa F , Proteínas Smad , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/genética , Peptidil-Prolil Isomerasa F/genética , Peptidil-Prolil Isomerasa F/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Osteogénesis/fisiología , Transducción de Señal , Proteínas Smad/genética , Proteínas Smad/metabolismo
13.
Front Bioeng Biotechnol ; 10: 846230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360391

RESUMEN

Human Microphysiological Systems (hMPS), otherwise known as organ- and tissue-on-a-chip models, are an emerging technology with the potential to replace in vivo animal studies with in vitro models that emulate human physiology at basic levels. hMPS platforms are designed to overcome limitations of two-dimensional (2D) cell culture systems by mimicking 3D tissue organization and microenvironmental cues that are physiologically and clinically relevant. Unlike animal studies, hMPS models can be configured for high content or high throughput screening in preclinical drug development. Applications in modeling acute and chronic injuries in the musculoskeletal system are slowly developing. However, the complexity and load bearing nature of musculoskeletal tissues and joints present unique challenges related to our limited understanding of disease mechanisms and the lack of consensus biomarkers to guide biological therapy development. With emphasis on examples of modeling musculoskeletal tissues, joints on chips, and organoids, this review highlights current trends of microphysiological systems technology. The review surveys state-of-the-art design and fabrication considerations inspired by lessons from bioreactors and biological variables emphasizing the role of induced pluripotent stem cells and genetic engineering in creating isogenic, patient-specific multicellular hMPS. The major challenges in modeling musculoskeletal tissues using hMPS chips are identified, including incorporating biological barriers, simulating joint compartments and heterogenous tissue interfaces, simulating immune interactions and inflammatory factors, simulating effects of in vivo loading, recording nociceptors responses as surrogates for pain outcomes, modeling the dynamic injury and healing responses by monitoring secreted proteins in real time, and creating arrayed formats for robotic high throughput screens. Overcoming these barriers will revolutionize musculoskeletal research by enabling physiologically relevant, predictive models of human tissues and joint diseases to accelerate and de-risk therapeutic discovery and translation to the clinic.

14.
Bone Rep ; 16: 101167, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35146075

RESUMEN

INTRODUCTION: Micro-computed tomography (µCT) is a valuable imaging modality for longitudinal quantification of bone volumes to identify disease or treatment effects for a broad range of conditions that affect bone health. Complex structures, such as the hindpaw with up to 31 distinct bones in mice, have considerable analytic potential, but quantification is often limited to a single bone volume metric due to the intensive effort of manual segmentation. Herein, we introduce a high-throughput, user-friendly, and semi-automated method for segmentation of murine hindpaw µCT datasets. METHODS: In vivo µCT was performed on male (n = 4; 2-8-months) and female (n = 4; 2-5-months) C57BL/6 mice longitudinally each month. Additional 9.5-month-old male C57BL/6 hindpaws (n = 6 hindpaws) were imaged by ex vivo µCT to investigate the effects of resolution and integration time on analysis outcomes. The DICOMs were exported to Amira software for the watershed-based segmentation, and watershed markers were generated automatically at approximately 80% accuracy before user correction. The semi-automated segmentation method utilizes the original data, binary mask, and bone-specific markers that expand to the full volume of the bone using watershed algorithms. RESULTS: Compared to the conventional manual segmentation using Scanco software, the semi-automated approach produced similar raw bone volumes. The semi-automated segmentation also demonstrated a significant reduction in segmentation time for both experienced and novice users compared to standard manual segmentation. ICCs between experienced and novice users were >0.9 (excellent reliability) for all but 4 bones. DISCUSSION: The described semi-automated segmentation approach provides remarkable reliability and throughput advantages. Adoption of the semi-automated segmentation approach will provide standardization and reliability of bone volume measures across experienced and novice users and between institutions. The application of this model provides a considerable strategic advantage to accelerate various research opportunities in pre-clinical bone and joint analysis towards clinical translation.

15.
Sci Rep ; 12(1): 3026, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194136

RESUMEN

To better understand the molecular mechanisms of tendon healing, we investigated the Murphy Roth's Large (MRL) mouse, which is considered a model of mammalian tissue regeneration. We show that compared to C57Bl/6J (C57) mice, injured MRL tendons have reduced fibrotic adhesions and cellular proliferation, with accelerated improvements in biomechanical properties. RNA-seq analysis revealed that differentially expressed genes in the C57 healing tendon at 7 days post injury were functionally linked to fibrosis, immune system signaling and extracellular matrix (ECM) organization, while the differentially expressed genes in the MRL injured tendon were dominated by cell cycle pathways. These gene expression changes were associated with increased α-SMA+ myofibroblast and F4/80+ macrophage activation and abundant BCL-2 expression in the C57 injured tendons. Transcriptional analysis of upstream regulators using Ingenuity Pathway Analysis showed positive enrichment of TGFB1 in both C57 and MRL healing tendons, but with different downstream transcriptional effects. MRL tendons exhibited of cell cycle regulatory genes, with negative enrichment of the cell senescence-related regulators, compared to the positively-enriched inflammatory and fibrotic (ECM organization) pathways in the C57 tendons. Serum cytokine analysis revealed decreased levels of circulating senescence-associated circulatory proteins in response to injury in the MRL mice compared to the C57 mice. These data collectively demonstrate altered TGFB1 regulated inflammatory, fibrosis, and cell cycle pathways in flexor tendon repair in MRL mice, and could give cues to improved tendon healing.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regeneración/genética , Regeneración/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Traumatismos de los Tendones/fisiopatología , Tendones/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/fisiología , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología , Animales , Adhesión Celular/genética , Adhesión Celular/fisiología , Ciclo Celular/genética , Ciclo Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Fibrosis/genética , Inflamación/genética , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Modelos Animales , Tendones/citología
16.
J Vis Exp ; (179)2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35068472

RESUMEN

Fractures in the femoral neck are a common occurrence in individuals with osteoporosis. Many mouse models have been developed to assess disease states and therapies, with biomechanical testing as a primary outcome measure. However, traditional biomechanical testing focuses on torsion or bending tests applied to the midshaft of the long bones. This is not typically the site of high-risk fractures in osteoporotic individuals. Therefore, a biomechanical testing protocol was developed that tests the femoral necks of murine femurs in cantilever bending loading to replicate better the types of fractures experienced by osteoporosis patients. Since the biomechanical outcomes are highly dependent on the flexural loading direction relative to the femoral neck, 3D printed guides were created to maintain a femoral shaft at an angle of 20° relative to the loading direction. The new protocol streamlined the testing by reducing variability in alignment (21.6° ± 1.5°, COV = 7.1%, n = 20) and improved reproducibility in the measured biomechanical outcomes (average COV = 26.7%). The new approach using the 3D printed guides for reliable specimen alignment improves rigor and reproducibility by reducing the measurement errors due to specimen misalignment, which should minimize sample sizes in mouse studies of osteoporosis.


Asunto(s)
Cuello Femoral , Osteoporosis , Animales , Fenómenos Biomecánicos , Fémur , Humanos , Ratones , Reproducibilidad de los Resultados
17.
Front Microbiol ; 12: 723498, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484165

RESUMEN

Staphylococcus aureus invasion of the osteocyte lacuno-canalicular network (OLCN) is a novel mechanism of bacterial persistence and immune evasion in chronic osteomyelitis. Previous work highlighted S. aureus cell wall transpeptidase, penicillin binding protein 4 (PBP4), and surface adhesin, S. aureus surface protein C (SasC), as critical factors for bacterial deformation and propagation through nanopores in vitro, representative of the confined canaliculi in vivo. Given these findings, we hypothesized that cell wall synthesis machinery and surface adhesins enable durotaxis- and haptotaxis-guided invasion of the OLCN, respectively. Here, we investigated select S. aureus cell wall synthesis mutants (Δpbp3, Δatl, and ΔmreC) and surface adhesin mutants (ΔclfA and ΔsasC) for nanopore propagation in vitro and osteomyelitis pathogenesis in vivo. In vitro evaluation in the microfluidic silicon membrane-canalicular array (µSiM-CA) showed pbp3, atl, clfA, and sasC deletion reduced nanopore propagation. Using a murine model for implant-associated osteomyelitis, S. aureus cell wall synthesis proteins were found to be key modulators of S. aureus osteomyelitis pathogenesis, while surface adhesins had minimal effects. Specifically, deletion of pbp3 and atl decreased septic implant loosening and S. aureus abscess formation in the medullary cavity, while deletion of surface adhesins showed no significant differences. Further, peri-implant osteolysis, osteoclast activity, and receptor activator of nuclear factor kappa-B ligand (RANKL) production were decreased following pbp3 deletion. Most notably, transmission electron microscopy (TEM) imaging of infected bone showed that pbp3 was the only gene herein associated with decreased submicron invasion of canaliculi in vivo. Together, these results demonstrate that S. aureus cell wall synthesis enzymes are critical for OLCN invasion and osteomyelitis pathogenesis in vivo.

18.
Am J Sports Med ; 49(10): 2743-2750, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236920

RESUMEN

BACKGROUND: Bony Bankart lesions can be encountered during treatment of shoulder instability. Current arthroscopic bony Bankart repair techniques involve intra-articular suture placement, but the effect of these repair techniques on the integrity of the humeral head articular surface warrants further investigation. PURPOSE: To quantify the degree of humeral head articular cartilage damage secondary to current arthroscopic bony Bankart repair techniques in a cadaveric model. STUDY DESIGN: Controlled laboratory study. METHODS: Testing was performed in 13 matched pairs of cadaveric glenoids with simulated bony Bankart fractures, with a defect width of 25% of the glenoid diameter. Half of the fractures were repaired with a double-row technique, while the contralateral glenoids were repaired with a single-row technique. Samples were subjected to 20,000 cycles of internal-external rotation across a 90° arc at 2 Hz after a compressive load of 750 N, or 90% body weight (whichever was less) was applied to simulate wear. Cartilage defects on the humeral head were quantified through a custom MATLAB script. Mean cartilage cutout differences were analyzed by the Wilcoxon rank-sum test. RESULTS: Both single- and double-row repairs showed macroscopic damage. The histomorphometric analysis demonstrated that the double-row technique resulted in a significantly (P = .036) more chondral damage (mean, 57,489.1 µm2; SD, 61,262.2 µm2) than the single-row repair (mean, 28,763.5 µm2; SD, 24,4990.2 µm2). CONCLUSION: Both single-row and double-row arthroscopic bony Bankart fixation techniques resulted in damage to the humeral head articular cartilage in the concavity-compression model utilized in this study. The double-row fixation technique resulted in a significantly increased cutout to the humeral head cartilage after simulated wear in this cadaveric model. CLINICAL RELEVANCE: This study provides data demonstrating that placement of intra-articular suture during arthroscopic bony Bankart repair techniques may harm the humeral head cartilage. While the double-row repair of bony Bankart lesions is more stable, it results in increased cartilage damage. These findings suggest that alternative, cartilage-sparing arthroscopic techniques for bony Bankart repair should be investigated.


Asunto(s)
Lesiones de Bankart , Inestabilidad de la Articulación , Luxación del Hombro , Articulación del Hombro , Artroscopía , Fenómenos Biomecánicos , Humanos , Cabeza Humeral/cirugía , Inestabilidad de la Articulación/cirugía , Luxación del Hombro/cirugía , Articulación del Hombro/cirugía
19.
Am J Sports Med ; 49(3): 773-779, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33544626

RESUMEN

BACKGROUND: Previous studies comparing stability between single- and double-row arthroscopic bony Bankart repair techniques focused only on the measurements of tensile forces on the bony fragment without re-creating a more physiologic testing environment. PURPOSE: To compare dynamic stability and displacement between single- and double-row arthroscopic repair techniques for acute bony Bankart lesions in a concavity-compression cadaveric model simulating physiologic conditions. STUDY DESIGN: Controlled laboratory study. METHODS: Testing was performed on 13 matched pairs of cadaveric glenoids with simulated bony Bankart fractures with a defect width of 25% of the inferior glenoid diameter. Half of the fractures were repaired with a double-row technique, and the contralateral glenoids were repaired with a single-row technique. To determine dynamic biomechanical stability and ultimate step-off of the repairs, a 150-N load and 2000 cycles of internal-external rotation at 1 Hz were applied to specimens to simulate early rehabilitation. Toggle was quantified throughout cycling with a coordinate measuring machine. Three-dimensional spatial measurements were calculated. After cyclic loading, the fracture displacement was measured. RESULTS: The bony Bankart fragment-glenoid initial step-off was found to be significantly greater (P < .001) for the single-row technique (mean, 896 µm; SD, 282 µm) compared with the double-row technique (mean, 436 µm; SD, 313 µm). The motion toggle was found to be significantly greater (P = .017) for the single-row technique (mean, 994 µm; SD, 711 µm) compared with the double-row technique (mean, 408 µm; SD, 384 µm). The ultimate interface displacement was found to be significantly greater (P = .029) for the single-row technique (mean, 1265 µm; SD, 606 µm) compared with the double-row technique (mean, 795 µm; SD, 398 µm). CONCLUSION: Using a concavity-compression glenohumeral cadaveric model, we found that the double-row arthroscopic fixation technique for bony Bankart repair resulted in superior stability and decreased displacement during simulated rehabilitation when compared with the single-row repair technique. CLINICAL RELEVANCE: The findings from this study may help guide surgical decision-making by demonstrating superior biomechanical properties (improved initial step-off, motion toggle, and interface displacement) of the double-row bony Bankart repair technique when compared with single-row fixation. The double-row repair construct demonstrated increased stability of the bony Bankart fragment, which may improve bony Bankart healing.


Asunto(s)
Lesiones de Bankart , Artroscopía , Fenómenos Biomecánicos , Cadáver , Humanos , Escápula/cirugía , Técnicas de Sutura
20.
J Biomech ; 116: 110243, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33485148

RESUMEN

Bone fragility and fracture risk are assessed by measuring the areal bone mineral density (aBMD) using dual-energy X-ray absorptiometry (DXA). While aBMD correlates with bone strength, it is a poor predictor of fragility fracture risk. Alternatively, fracture toughness assesses the bone's resistance to crack propagation and fracture, making it a suitable bone quality metric. Here, we explored how femoral midshaft measurements from DXA, micro-computed tomography (µCT), and Raman spectroscopy could predict fracture toughness. We hypothesized that ovariectomy (OVX) decreases aBMD and fracture toughness compared to controls and we can optimize a multivariate assessment of bone quality by combining results from X-ray and Raman spectroscopy. Female mice underwent an OVX (n = 5) or sham (n = 5) surgery at 3 months of age. Femurs were excised 3 months after ovariectomy and assessed with Raman spectroscopy, µCT, and DXA. Subsequently, a notch was created on the anterior side of the mid-diaphysis of the femurs. Three-point bending induced a controlled fracture that initiated at the notch. The OVX mice had a significantly lower aBMD, cortical thickness, and fracture toughness when compared to controls (p < 0.05). A leave one out cross-validated (LOOCV) partial least squares regression (PLSR) model based only on the combination of aBMD and cortical thickness showed no significant predictive correlations with fracture toughness, whereas a PLSR model based on principal components derived from the full Raman spectra yielded significant prediction (r2 = 0.71, p < 0.05). Further, the PLSR model was improved by incorporating aBMD, cortical thickness, and principal components from Raman spectra (r2 = 0.92, p < 0.001). This exploratory study demonstrates combining X-ray with Raman spectroscopy leads to a more accurate assessment of bone fracture toughness and could be a useful diagnostic tool for the assessment of fragility fracture risk.


Asunto(s)
Fracturas del Fémur , Espectrometría Raman , Absorciometría de Fotón , Animales , Densidad Ósea , Femenino , Fracturas del Fémur/diagnóstico por imagen , Humanos , Ratones , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...