Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 15: 1360989, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38752172

RESUMEN

Purpose: This feasibility study aimed to investigate the use of exhaled breath analysis to capture and quantify relative changes of metabolites during resolution of acute diabetic ketoacidosis under insulin and rehydration therapy. Methods: Breath analysis was conducted on 30 patients of which 5 with DKA. They inflated Nalophan bags, and their metabolic content was subsequently interrogated by secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS). Results: SESI-HRMS analysis showed that acetone, pyruvate, and acetoacetate, which are well known to be altered in DKA, were readily detectable in breath of participants with DKA. In addition, a total of 665 mass spectral features were found to significantly correlate with base excess and prompt metabolic trajectories toward an in-control state as they progress toward homeostasis. Conclusion: This study provides proof-of-principle for using exhaled breath analysis in a real ICU setting for DKA monitoring. This non-invasive new technology provides new insights and a more comprehensive overview of the effect of insulin and rehydration during DKA treatment.


Asunto(s)
Pruebas Respiratorias , Cetoacidosis Diabética , Insulina , Humanos , Cetoacidosis Diabética/metabolismo , Pruebas Respiratorias/métodos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Insulina/metabolismo , Estudios de Factibilidad , Fluidoterapia/métodos , Anciano , Biomarcadores/metabolismo , Biomarcadores/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos
2.
J Breath Res ; 18(1)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38029449

RESUMEN

Secondary electrospray ionization-high resolution mass spectrometry (SESI-HRMS) is an established technique in the field of breath analysis characterized by its short analysis time, as well as high levels of sensitivity and selectivity. Traditionally, SESI-HRMS has been used for real-time breath analysis, which requires subjects to be at the location of the analytical platform. Therefore, it limits the possibilities for an introduction of this methodology in day-to-day clinical practice. However, recent methodological developments have shown feasibility on the remote sampling of exhaled breath in Nalophan® bags prior to measurement using SESI-HRMS. To further explore the range of applications of this method, we conducted a proof-of-concept study to assess the impact of the storage time of exhaled breath in Nalophan® bags at different temperatures (room temperature and dry ice) on the relative intensities of the compounds. In addition, we performed a detailed study of the storage effect of 27 aldehydes related to oxidative stress. After 2 h of storage, the mean of intensity of allm/zsignals relative to the samples analyzed without prior storage remained above 80% at both room temperature and dry ice. For the 27 aldehydes, the mean relative intensity losses were lower than 20% at 24 h of storage, remaining practically stable since the first hour of storage following sample collection. Furthermore, the mean relative intensity of most aldehydes in samples stored at room temperature was higher than those stored in dry ice, which could be related to water vapor condensation issues. These findings indicate that the exhaled breath samples could be preserved for hours with a low percentage of mean relative intensity loss, thereby allowing more flexibility in the logistics of off-line SESI-HRMS studies.


Asunto(s)
Hielo Seco , Tereftalatos Polietilenos , Humanos , Pruebas Respiratorias/métodos , Espiración , Aldehídos
3.
J Breath Res ; 17(4)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37678210

RESUMEN

Therapeutic drug monitoring (TDM) of medications with a narrow therapeutic window is a common clinical practice to minimize toxic effects and maximize clinical outcomes. Routine analyses rely on the quantification of systemic blood concentrations of drugs. Alternative matrices such as exhaled breath are appealing because of their inherent non-invasive nature. This is especially the case for pediatric patients. We have recently showcased the possibility of predicting systemic concentrations of valproic acid (VPA), an anti-seizure medication by real-time breath analysis in two real clinical settings. This approach, however, comes with the limitation of the patients having to physically exhale into the mass spectrometer. This restricts the possibility of sampling from patients not capable or available to exhale into the mass spectrometer located on the hospital premises. In this work, we developed an alternative method to overcome this limitation by collecting the breath samples in customized bags and subsequently analyzing them by secondary electrospray ionization coupled to high-resolution mass spectrometry (SESI-HRMS). A total ofn= 40 patients (mean ± SD, 11.5 ± 3.5 y.o.) diagnosed with epilepsy and taking VPA were included in this study. The patients underwent three measurements: (i) serum concentrations of total and free VPA, (ii) real-time breath analysis and (iii) off-line analysis of exhaled breath collected in bags. The agreement between the real-time and the off-line breath analysis methods was evaluated using Lin's concordance correlation coefficient (CCC). CCC was computed for ten mass spectral predictors of VPA concentrations. Lin's CCC was >0.6 for all VPA-associated features, except for two low-signal intensity isotopic peaks. Finally, free and total serum VPA concentrations were predicted by cross validating the off-line data set. Support vector machine algorithms provided the most accurate predictions with a root mean square error of cross validation of 29.0 ± 7.4 mg l-1and 3.9 ± 1.4 mg l-1for total and free VPA (mean ± SD), respectively. As a secondary analysis, we explored whether exhaled metabolites previously associated with side-effects and response to medication could be rendered by the off-line analysis method. We found that five features associated with side effects showed a CCC > 0.6, whereas none of the drug response-associated peaks reached this cut-off. We conclude that the clinically relevant free fraction of VPA can be predicted by this combination of off-line breath collection with rapid SESI-HRMS analysis. This opens new possibilities for breath based TDM in clinical settings.


Asunto(s)
Líquidos Corporales , Neoplasias de la Mama , Humanos , Adolescente , Niño , Femenino , Ácido Valproico/uso terapéutico , Pruebas Respiratorias , Algoritmos
4.
J Proteome Res ; 22(3): 990-995, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36812155

RESUMEN

Real-time breath analysis using secondary electrospray ionization coupled with high-resolution mass spectrometry is a fast and noninvasive method to access the metabolic state of a person. However, it lacks the ability to unequivocally assign mass spectral features to compounds due to the absence of chromatographic separation. This can be overcomed by using exhaled breath condensate and conventional liquid chromatography-mass spectrometry (LC-MS) systems. In this study, to the best of our knowledge, we confirm for the first time the presence of six amino acids (GABA, Oxo-Pro, Asp, Gln, Glu, and Tyr) previously reported to be involved in response to and side effects from antiseizure medications in exhaled breath condensate and by extension in exhaled human breath. Raw data are publicly available at MetaboLights with the accession number MTBLS6760.


Asunto(s)
Aminoácidos , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Pruebas Respiratorias/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos
5.
iScience ; 25(12): 105557, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36479147

RESUMEN

Exhaled breath contains valuable information at the molecular level and offers promising potential for precision medicine. However, few breath tests transition to routine clinical practice, partly because of the missing validation in multicenter trials. Therefore, we developed and applied an interoperability framework for standardized multicenter data acquisition and processing for breath analysis with secondary electrospray ionization-high resolution mass spectrometry. We aimed to determine the technical variability and metabolic coverage. Comparison of multicenter data revealed a technical variability of ∼20% and a core signature of the human exhaled metabolome consisting of ∼850 features, corresponding mainly to amino acid, xenobiotic, and carbohydrate metabolic pathways. In addition, we found high inter-subject variability for certain metabolic classes (e.g., amino acids and fatty acids), whereas other regions such as the TCA cycle were relatively stable across subjects. The interoperability framework and overview of metabolic coverage presented here will pave the way for future large-scale multicenter trials.

6.
Chemosphere ; 287(Pt 2): 132143, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34509020

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are a large and diverse class of chemicals. While some have been phased out internationally due to concerns over their human and environmental health risks, novel alternative PFASs continue to be manufactured and detected in environmental samples. The occurrence and fate of these alternatives remain poorly understood. The present study investigated the occurrence of an emerging class of PFAS alternative, the monohydrogen-substituted perfluoroalkyl carboxylic acids (H-PFCAs), in conjunction with the more well-known PFCAs. A weak anion exchange solid phase extraction-liquid chromatography tandem mass spectrometry method for quantitative determination of H-PFCAs in surface water was developed, validated, and applied on samples collected from the Netherlands. To improve chromatography, especially for short-chain (H-)PFCAs, an ion-pairing agent, tetrabutylammonium hydrogen sulphate, was used. The method was validated for linearity (R2 > 0.99), instrumental detection limits (0.01-0.09 ng/mL), method detection limits (0.03-0.75 ng/mL), matrix effects (<20%), percent absolute- and relative recovery (57-121%), trueness (130-80%), repeatability (<20%), and within-lab reproducibility (<20%). Eleven out of fourteen PFASs showed acceptable results. Application of the newly validated method to surface water throughout the Netherlands revealed trace levels of H-PFCAs (including two new H-PFCAs) and high concentrations of PFCAs.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Carboxílicos , Monitoreo del Ambiente , Fluorocarburos/análisis , Humanos , Reproducibilidad de los Resultados , Agua , Contaminantes Químicos del Agua/análisis
7.
Anal Chem ; 93(47): 15579-15583, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34780695

RESUMEN

Breath analysis by secondary electrospray ionization-high resolution mass spectrometry (SESI-HRMS) offers the possibility to measure comprehensive metabolic profiles. The technology is currently being deployed in several clinical settings in Switzerland and China. However, patients are required to exhale directly into the device located in a dedicated room. Consequently, clinical implementation in patients incapable of performing necessary exhalation maneuvers (e.g., infants) or immobile (e.g., too weak, elderly, or in intensive care) remains a challenge. The aim of this study was to develop a method to extend such breath analysis capabilities to this subpopulation of patients by collecting breath samples remotely (offline) and promptly (within 10 min) transfer them to SESI-HRMS for chemical analysis. We initially assessed the method in adults by comparing breath mass spectra collected offline with Nalophan bags against spectra of breath samples collected in real time. In total, 13 adults provided 176 pairs of real-time and offline measurements. Lin's concordance correlation coefficient (CCC) was used to estimate the agreement between offline and real-time analyses. Here, 1249 mass spectral features (55% of total detected) exhibited Lin's CCC > 0.6. Subsequently, the method was successfully deployed to analyze breath samples from infants (n = 16), obtaining as a result SESI-HRMS breath profiles. To demonstrate the clinical feasibility of the method, we measured in parallel other clinical variables: (i) lung function, which characterizes the breathing patterns, and (ii) nitric oxide, which is a surrogate marker of airway inflammation. As a showcase, we focused our analysis on the exhaled oxidative stress marker 4-hydroxynonenal and its association with nitric oxide and minute ventilation.


Asunto(s)
Pruebas Respiratorias , Espiración , Adulto , Anciano , Cromatografía de Gases y Espectrometría de Masas , Humanos , Pulmón , Óxido Nítrico
8.
J Pharm Biomed Anal ; 205: 114311, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34403867

RESUMEN

The advantages that on-line breath analysis has shown in different fields have already made it stand as an interesting tool for pharmacokinetic studies. This review summarizes recent progress in the field, diving into the different analytical methods and the different advantages and hurdles encountered. We conclude that there is a wealth of limitations in the application of this technique, and key aspects like standardization are still outstanding. Nevertheless, this is an experimental field that has not yet been fully explored; and the advantages it offers for animal welfare, decrease in the amount of drug needed in experimental studies, and complementary insights to current pharmacological studies, warrant further exploration. Further studies are needed to overcome current limitations and incorporate this technique into the toolbox of pharmacological studies, both at an industrial and academic level.


Asunto(s)
Pruebas Respiratorias , Espiración , Animales , Estándares de Referencia
9.
Commun Med (Lond) ; 1: 21, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35602217

RESUMEN

Background: Therapeutic management of epilepsy remains a challenge, since optimal systemic antiseizure medication (ASM) concentrations do not always correlate with improved clinical outcome and minimal side effects. We tested the feasibility of noninvasive real-time breath metabolomics as an extension of traditional therapeutic drug monitoring for patient stratification by simultaneously monitoring drug-related and drug-modulated metabolites. Methods: This proof-of-principle observational study involved 93 breath measurements of 54 paediatric patients monitored over a period of 2.5 years, along with an adult's cohort of 37 patients measured in two different hospitals. Exhaled breath metabolome of epileptic patients was measured in real time using secondary electrospray ionisation-high-resolution mass spectrometry (SESI-HRMS). Results: We show that systemic ASM concentrations could be predicted by the breath test. Total and free valproic acid (VPA, an ASM) is predicted with concordance correlation coefficient (CCC) of 0.63 and 0.66, respectively. We also find (i) high between- and within-subject heterogeneity in VPA metabolism; (ii) several amino acid metabolic pathways are significantly enriched (p < 0.01) in patients suffering from side effects; (iii) tyrosine metabolism is significantly enriched (p < 0.001), with downregulated pathway compounds in non-responders. Conclusions: These results show that real-time breath analysis of epileptic patients provides reliable estimations of systemic drug concentrations along with risk estimates for drug response and side effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...