Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39323200

RESUMEN

Excessive dietary metal intake from crops grown on contaminated urban dumpsites poses a global health risk to consumers. We evaluated the health risk to adult and child consumers from dietary exposure to metals and metalloids in crops cultivated at the Mbale (Uganda) dumpsite centre. Thirteen crop types grown on the dumpsite soil were sampled and analyzed for concentrations of 11 metals: Fe, Al, Zn, Mn, Cu, Pb, Cr, Hg, Co, Ni, Cd, and two metalloids: Se and As. Different proportions of the crops were combined into 12 meal classes to simulate the diets of residents and estimate noncancer and cancer risks. The findings indicated that most individual crop types and simulated diets lacked sufficient selenium for bodily functions. Furthermore, their metal accumulations exceeded the Food and Agriculture Organization (FAO) and the World Health Organization (WHO) permissible limits (mg/kg) for Al (20), Fe (100), Ni (10), Cu (20), Mn (10), Pb (0.3), Se (0.05), and Zn (99.4). The four most abundant metals in the various crop types and diets were Al, Fe, Mn, and Zn. A positive correlation between the metals in the crops indicated a common origin, which could possibly be the dumpsite soil. The chronic dietary intake (CDI) of metals was higher in children, and thus children faced higher noncancer and cancer risks compared with adults. The overall CDI values for each metal ranged from 0.000718 to 2.171 in adults, and 0.00125 to 3.781662 in children, which is approximately 1.74 times higher in children than in adult consumers. The noncancer and cancer risks ranged from moderate to high with Co, Cr, Fe, Mn, and Zn being mostly responsible for the high noncancer risks, and Al being the predominant contributor to cancer risks. The total noncancer risk levels equally ranged from moderate (1.4-3.3) for adults, and moderate to high (2.4-5.7) for children; the cancer risks were moderate to high in adults, with Al contributing to between 68% and 92% of the total risks across the 12 meal classes. Overall, CDI values and noncancer and cancer risks were all higher in children than in adults. The vegetables Amaranthus hybridus, Vigna unguiculate, Amaranthus dubius, and Cucurbita maxima significantly contributed to the high noncancer risk to both adults and children, particularly when they constituted 40% or more of the meal. Four additional vegetables (Cocorhrous olitorous, Brassica oleracea, Amaranthus cruentus, and Gynandropsis gynandra) also posed a high risk to children when consumed in large quantities. Our results highlight the urgent need to develop regulatory frameworks and/or rigorously enforce existing land and food governance policies to protect consumers' health from unsafe metal concentrations in crops grown on dumpsites. Environ Toxicol Chem 2024;00:1-17. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

2.
Integr Environ Assess Manag ; 20(1): 9-35, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37039089

RESUMEN

Growing populations and consumption drive the challenges of solid waste management (SWM); globalization of transport, food production, and trade, including waste trading, distributes risks worldwide. Using waste hierarchy (WH; reduce, reuse, and recycle) and circular economy (CE) concepts, we updated a conceptual waste framework used by international organizations to evaluate SWM practices. We identified the key steps and the important factors, as well as stakeholders, which are essential features for effective SWM. Within this updated conceptual framework, we qualitatively evaluated global SWM strategies and practices, identifying opportunities, barriers, and best practices. We find that, although a few exceptional countries exhibit zero-waste compliance, most fare poorly, as exhibited by the high waste generation, incineration, and disposal (open dumping, landfilling) volumes. In the Global North, SWM strategies and practices rely heavily on technologies, economic tools, regulatory frameworks, education, and social engagement to raise stakeholder awareness and enhance inclusion and participation; in the Global South, however, many governments take sole legal responsibility for SWM, seeking to eliminate waste as a public "nuisance." Separation and recycling in the Global South are implemented mainly by "informal" economies in which subsistence needs drive recyclable material retrieval. Imported, regionally inappropriate tools, economic constraints, weak policies and governance, waste trading, noninclusive stakeholder participation, data limitations, and limited public awareness continue to pose major waste and environmental management challenges across nations. In the context of the framework, we conclude that best practices from around the world can be used to guide decision-making, globally. Despite variations in drivers and needs across regions, nations in both the Global North and South need to improve WH and CE compliance, and enhance stakeholder partnership, awareness, and participation throughout the SWM process. Partnerships between the Global North and South could better manage traded wastes, reduce adverse impacts, and enhance global environmental sustainability and equity, supporting UN Sustainable Development Goals. Integr Environ Assess Manag 2024;20:9-35. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Residuos Sólidos , Reciclaje , Desarrollo Sostenible
3.
Integr Environ Assess Manag ; 16(3): 362-377, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31850643

RESUMEN

Food crops can be used as biomonitors to assess potential public health food safety hazards from contaminated agricultural environments. Globally, more than 800 million people grow fruits, vegetables, and grains on urban garden soils with unknown health risks. This worldwide practice has exposed consumers to pathogenic and carcinogenic risks from locally grown and imported contaminated foodstuffs such as Amaranthus cruentus and Zea mays, traditional and widely consumed crops across the globe. This study used Z. mays and A. cruentus crops to investigate the occurrence and spatial variations of aluminum (Al), chromium (Cr), iron (Fe), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), mercury (Hg), and lead (Pb) concentrations across the Mbale dumpsite, Uganda. Mean concentrations for Fe, Al, Zn, Mn, and Cu were high in both crops, whereas Pb, Cr, Co, Cd, As, Hg, Se, and Ni occurred in trace amounts. Using the 2 crops as biomonitors, significant variations for Al, Zn, Fe, Cr, and Co concentrations in individual crops were identified across the dump center, hill slope, and riverbank. The variations in Al, Zn, Fe, Cr, and Co concentrations were specific for crop types, crop parts, and location. The highest overall accumulation of metals was at the dump center and in crop leaves. Except Pb concentrations in Z. mays seeds, Cr, Pb, Zn, and Al concentrations in other crop parts were above World Health Organization/Food and Agricultural Organization consumer food safety limits. Therefore, Z. mays and A. cruentus consumption could pose health risks to consumers. Further health assessments and potential regulations are recommended to reduce potential health risks from metals in crops for human consumption. Integr Environ Assess Manag 2020;16:362-377. © 2019 SETAC.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Contaminantes del Suelo , Oligoelementos , Productos Agrícolas , Monitoreo del Ambiente , Humanos , Metales , Uganda , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...