Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Sci Transl Med ; 16(729): eadh8335, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38198568

RESUMEN

Labor is a complex physiological process requiring a well-orchestrated dialogue between the mother and fetus. However, the cellular contributions and communications that facilitate maternal-fetal cross-talk in labor have not been fully elucidated. Here, single-cell RNA sequencing (scRNA-seq) was applied to decipher maternal-fetal signaling in the human placenta during term labor. First, a single-cell atlas of the human placenta was established, demonstrating that maternal and fetal cell types underwent changes in transcriptomic activity during labor. Cell types most affected by labor were fetal stromal and maternal decidual cells in the chorioamniotic membranes (CAMs) and maternal and fetal myeloid cells in the placenta. Cell-cell interaction analyses showed that CAM and placental cell types participated in labor-driven maternal and fetal signaling, including the collagen, C-X-C motif ligand (CXCL), tumor necrosis factor (TNF), galectin, and interleukin-6 (IL-6) pathways. Integration of scRNA-seq data with publicly available bulk transcriptomic data showed that placenta-derived scRNA-seq signatures could be monitored in the maternal circulation throughout gestation and in labor. Moreover, comparative analysis revealed that placenta-derived signatures in term labor were mirrored by those in spontaneous preterm labor and birth. Furthermore, we demonstrated that early in gestation, labor-specific, placenta-derived signatures could be detected in the circulation of women destined to undergo spontaneous preterm birth, with either intact or prelabor ruptured membranes. Collectively, our findings provide insight into the maternal-fetal cross-talk of human parturition and suggest that placenta-derived single-cell signatures can aid in the development of noninvasive biomarkers for the prediction of preterm birth.


Asunto(s)
Nacimiento Prematuro , Recién Nacido , Embarazo , Humanos , Femenino , Placenta , Transducción de Señal , Análisis de Secuencia de ARN , Parto
2.
Am J Obstet Gynecol ; 230(4): 450.e1-450.e18, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37806612

RESUMEN

BACKGROUND: Intravascular inflammation and an antiangiogenic state have been implicated in the pathophysiology of preeclampsia. On the basis of the profiles of their angiogenic/antiangiogenic factors, women with preeclampsia at term may be classified into 2 subgroups with different characteristics and prevalence of adverse outcomes. This study was undertaken to examine whether these 2 subgroups of preeclampsia at term also show differences in their profiles of intravascular inflammation. OBJECTIVE: This study aimed to determine the plasma profiles of cytokines and chemokines in women with preeclampsia at term who had a normal or an abnormal angiogenic profile. STUDY DESIGN: A nested case-control study was conducted to include women classified into 3 groups: women with an uncomplicated pregnancy (n=213) and women with preeclampsia at term with a normal (n=55) or an abnormal (n=41) angiogenic profile. An abnormal angiogenic profile was defined as a plasma ratio of placental growth factor and soluble fms-like tyrosine kinase-1 multiple of the median <10th percentile for gestational age. Concentrations of cytokines were measured by multiplex immunoassays. RESULTS: Women with preeclampsia at term and an abnormal angiogenic profile showed evidence of the greatest intravascular inflammation among the study groups. These women had higher plasma concentrations of 5 cytokines (interleukin-6, interleukin-8, interleukin-12/interleukin-23p40, interleukin-15, and interleukin-16) and 7 chemokines (eotaxin, eotaxin-3, interferon-γ inducible protein-10, monocyte chemotactic protein-4, macrophage inflammatory protein-1ß, macrophage-derived chemokine, and thymus and activation-regulated chemokine compared to women with an uncomplicated pregnancy. By contrast, women with preeclampsia at term and a normal angiogenic profile, compared to women with an uncomplicated pregnancy, had only a higher plasma concentration of monocyte chemotactic protein-4. A correlation between severity of the antiangiogenic state, blood pressure, and plasma concentrations of a subset of cytokines was observed. CONCLUSION: Term preeclampsia can be classified into 2 clusters. One is characterized by an antiangiogenic state coupled with an excessive inflammatory process, whereas the other has neither of these features. These findings further support the heterogeneity of preeclampsia at term and may explain the distinct clinical outcomes.


Asunto(s)
Preeclampsia , Embarazo , Femenino , Humanos , Factor de Crecimiento Placentario , Citocinas , Estudios de Casos y Controles , Inductores de la Angiogénesis , Biomarcadores , Inflamación , Proteínas Quimioatrayentes de Monocitos , Receptor 1 de Factores de Crecimiento Endotelial Vascular
3.
Reprod Biol Endocrinol ; 21(1): 111, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996893

RESUMEN

Polycystic ovary syndrome (PCOS) is a heterogeneous functional endocrine disorder associated with a low-grade, chronic inflammatory state. Patients with PCOS present an increased risk of metabolic comorbidities and often menstrual dysregulation and infertility due to anovulation and/or poor oocyte quality. Multiple mechanisms including oxidative stress and low-grade inflammation are believed to be responsible for oocyte deterioration; however, the influence of nitric oxide (NO) insufficiency in oocyte quality and ovulatory dysfunction in PCOS is still a matter for debate. Higher production of superoxide (O2•-) mediated DNA damage and impaired antioxidant defense have been implicated as contributory factors for the development of PCOS, with reported alteration in superoxide dismutase (SOD) function, an imbalanced zinc/copper ratio, and increased catalase activity. These events may result in decreased hydrogen peroxide (H2O2) accumulation with increased lipid peroxidation events. A decrease in NO, potentially due to increased activity of NO synthase (NOS) inhibitors such as asymmetric dimethylarginine (ADMA), and imbalance in the distribution of reactive oxygen species (ROS), such as decreased H2O2 and increased O2•-, may offset the physiological processes surrounding follicular development, oocyte maturation, and ovulation contributing to the reproductive dysfunction in patients with PCOS. Thus, this proposal aims to evaluate the specific roles of NO, oxidative stress, ROS, and enzymatic and nonenzymatic elements in the pathogenesis of PCOS ovarian dysfunction, including oligo- anovulation and oocyte quality, with the intent to inspire better application of therapeutic options. The authors believe more consideration into the specific roles of oxidative stress, ROS, and enzymatic and nonenzymatic elements may allow for a more thorough understanding of PCOS. Future efforts elaborating on the role of NO in the preoptic nucleus to determine its influence on GnRH firing and follicle-stimulating hormone/Luteinizing hormone (FSH/LH) production with ovulation would be of benefit in PCOS. Consequently, treatment with an ADMA inhibitor or NO donor may prove beneficial to PCOS patients experiencing reproductive dysfunction and infertility.


Asunto(s)
Anovulación , Infertilidad , Síndrome del Ovario Poliquístico , Femenino , Humanos , Síndrome del Ovario Poliquístico/metabolismo , Hormona Luteinizante/metabolismo , Óxido Nítrico , Hormona Folículo Estimulante/metabolismo , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Estrés Oxidativo
4.
J Immunol ; 211(7): 1082-1098, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37647360

RESUMEN

T cells are implicated in the pathophysiology of preterm labor and birth, the leading cause of neonatal morbidity and mortality worldwide. Specifically, maternal decidual T cells infiltrate the chorioamniotic membranes in chronic chorioamnionitis (CCA), a placental lesion considered to reflect maternal anti-fetal rejection, leading to preterm labor and birth. However, the phenotype and TCR repertoire of decidual T cells in women with preterm labor and CCA have not been investigated. In this study, we used phenotyping, TCR sequencing, and functional assays to elucidate the molecular characteristics and Ag specificity of T cells infiltrating the chorioamniotic membranes in women with CCA who underwent term or preterm labor. Phenotyping indicated distinct enrichment of human decidual effector memory T cell subsets in cases of preterm labor with CCA without altered regulatory T cell proportions. TCR sequencing revealed that the T cell repertoire of CCA is characterized by increased TCR richness and decreased clonal expansion in women with preterm labor. We identified 15 clones associated with CCA and compared these against established TCR databases, reporting that infiltrating T cells may possess specificity for maternal and fetal Ags, but not common viral Ags. Functional assays demonstrated that choriodecidual T cells can respond to maternal and fetal Ags. Collectively, our findings provide, to our knowledge, novel insight into the complex processes underlying chronic placental inflammation and further support a role for effector T cells in the mechanisms of disease for preterm labor and birth. Moreover, this work further strengthens the contribution of adaptive immunity to the syndromic nature of preterm labor and birth.


Asunto(s)
Corioamnionitis , Trabajo de Parto Prematuro , Embarazo , Recién Nacido , Humanos , Femenino , Placenta , Inflamación , Receptores de Antígenos de Linfocitos T
5.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292812

RESUMEN

Cultured naïve pluripotent ESC differentiate into first lineage, XEN or second lineage, formative pluripotency. Hyperosmotic stress (sorbitol), like retinoic acid, decreases naive pluripotency and increases XEN in two ESC lines, as reported by bulk and scRNAseq, analyzed by UMAP. Sorbitol overrides pluripotency in two ESC lines as reported by bulk and scRNAseq, analyzed by UMAP. UMAP analyzed the effects of 5 stimuli - three stressed (200-300mM sorbitol with leukemia inhibitory factor +LIF) and two unstressed (+LIF, normal stemness-NS and -LIF, normal differentiation-ND). Sorbitol and RA decrease naive pluripotency and increase subpopulations of 2-cell embryo-like and XEN sub-lineages; primitive, parietal, and visceral endoderm (VE). Between the naïve pluripotency and primitive endoderm clusters is a stress-induced cluster with transient intermediate cells with higher LIF receptor signaling, with increased Stat3, Klf4, and Tbx3 expression. Sorbitol, like RA, also suppresses formative pluripotency, increasing lineage imbalance. Although bulk RNAseq and gene ontology group analyses suggest that stress induces head organizer and placental markers, scRNAseq reveals few cells. But VE and placental markers/cells were in adjacent clusters, like recent reports. UMAPs show that dose-dependent stress overrides stemness to force premature lineage imbalance. Hyperosmotic stress induces lineage imbalance, and other toxicological stresses, like drugs with RA, may cause lineage imbalance, resulting in miscarriages or birth defects.

6.
Reprod Sci ; 30(8): 2339-2348, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36988904

RESUMEN

Both uterine endometrium and embryo contribute to implantation success. However, their relative role in the implantation success is still a matter for debate, as are the roles of endometrial receptivity analysis (ERA), endometrial scratch (ES), endometrial microbiome, and intrauterine or intravenous measures that are currently advocated to improve the implantation success. There is insufficient evidence to suggest that the endometrium is more important than the embryo in determining the implantation success and the utility of these measures, especially when euploid embryos are transferred is limited. Although embryo implantation on epithelium other than the endometrium is a very rare event, evidence suggests that embryo implantation and growth is not limited to the endometrium alone. Embryos can implant and develop to result in livebirths on epithelium that lacks the typical endometrial development present at implantation. Currently, the role of embryo euploidy in implantation success is underappreciated. At a minimum, it is the author's opinion that until robust, definitive studies are conducted that demonstrate benefit, reproductive endocrinologists and infertility specialist should be prudent in the way they counsel patients about the utility of ERA, ES, and other measures in improving implantation success.


Asunto(s)
Implantación del Embrión , Infertilidad , Femenino , Humanos , Endometrio , Útero , Embrión de Mamíferos
7.
Reprod Sci ; 30(7): 2069-2078, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36920672

RESUMEN

Zinc is a transition metal that displays wide physiological implications ranging from participation in hundreds of enzymes and proteins to normal growth and development. In the reproductive tract of both sexes, zinc maintains a functional role in spermatogenesis, ovulation, fertilization, normal pregnancy, fetal development, and parturition. In this work, we review evidence to date regarding the importance of zinc in oocyte maturation and development, with emphasis on the role of key zinc-binding proteins, as well as examine the effects of zinc and reactive oxygen species (ROS) on oocyte quality and female fertility. We summarize our current knowledge about the participation of zinc in the developing oocyte bound to zinc finger proteins as well as loosely bound zinc ion in the intracellular and extracellular environments. These include aspects related to (1) the impact of zinc deficiency and overwhelming production of ROS under inflammatory conditions on the offset of the physiological antioxidant machinery disturbing biomolecules, proteins, and cellular processes, and their role in contributing to further oxidative stress; (2) the role of ROS in modulating damage to proteins containing zinc, such as zinc finger proteins and nitric oxide synthases (NOS), and expelling the zinc resulting in loss of protein function; and (3) clarify the different role of oxidative stress and zinc deficiency in the pathophysiology of infertility diseases with special emphasis on endometriosis-associated infertility.


Asunto(s)
Infertilidad , Zinc , Embarazo , Humanos , Masculino , Femenino , Especies Reactivas de Oxígeno/metabolismo , Zinc/metabolismo , Estrés Oxidativo , Infertilidad/metabolismo , Oocitos/metabolismo
8.
F S Sci ; 4(2): 114-120, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36787827

RESUMEN

OBJECTIVE: To study the implications of decreased zinc and tetrahydrobiopterin (H4B) associated with chronological aging on oocyte quality using a mouse model. H4B and zinc are essential cofactors for nitric oxide synthase (NOS), because they aid in electron transfer and dimeric stability, and their bioavailability is crucial in regulating NOS coupling. We have previously shown that sufficient levels of nitric oxide (NO) are essential for maintaining oocyte quality and activation, and NO levels decrease in the oocyte as a function of age. Thus, it is plausible that zinc and H4B may decrease as a function of age, resulting in NOS dysfunction with subsequent depletion of NO. Additionally, increased production of reactive oxygen species from the monomeric form can further disrupt oocyte quality and NO bioavailability. DESIGN: Experimental laboratory study. SETTING: Laboratory. ANIMALS: B6D2F1 mice. INTERVENTION(S): Sibling oocytes were retrieved from super-ovulated B6D2F1 mice from 3 age groups: 8-14 weeks (young breeders [YBs]), 48-52 weeks (retired breeders [RBs]), and 80-84 weeks (old animals [OAs]). MAIN OUTCOME MEASURE(S): Oocytes were scored for ooplasmic/spindle microtubule (MT) morphology, chromosomal alignment, and cortical granule (CG) intactness using immunofluorescence and confocal microscopy with 3 dimension image reconstruction and subjected to an high-performance liquid chromatography assay to measure the concentrations of H4B and its metabolites, as well as the zinc measurement using atomic absorption spectrophotometry. RESULT(S): Oocyte scoring showed a reduction in "good" quality oocyte percentage as age increases, with YB having the highest percentage of quality oocytes followed by RB and OA. The high-performance liquid chromatography analysis showed a significant progressive decrease in total H4B in RB and OA (0.00098 picogram (pg)/oocyte and 0.00069 pg/oocyte, respectively) compared with YB (0.00125 pg/oocyte). Atomic absorbance spectrophotometry revealed a significant progressive decrease in zinc concentration in RB and OA compared with YB (8.45 pg/oocyte and 5.82 pg/oocyte vs. 10.05 pg/oocyte, respectively). CONCLUSION(S): Age-related diminution in oocyte quality is paralleled by a decline in the levels of H4B and zinc. The resultant deficiency in the oocytes can lead to the inability of NOS to maintain dimerization. Consequent uncoupling of NOS generates superoxide instead of NO, which participates in a multitude of reactions contributing to oxidative stress. Therefore, dysfunction of NOS secondary to zinc and H4B loss is a major mechanism involved in reactive oxygen species generation and oocyte quality deterioration related to the chronological age.


Asunto(s)
Óxido Nítrico Sintasa , Zinc , Animales , Especies Reactivas de Oxígeno , Óxido Nítrico Sintasa/química , Óxido Nítrico Sintasa/metabolismo , Oocitos/metabolismo , Óxido Nítrico/metabolismo
9.
Birth Defects Res ; 114(16): 1014-1036, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35979652

RESUMEN

A problem in developmental toxicology is the massive loss of life from fertilization through gastrulation, and the surprising lack of knowledge of causes of miscarriage. Half to two-thirds of embryos are lost, and environmental and genetic causes are nearly equal. Simply put, it can be inferred that this is a difficult period for normal embryos, but that environmental stresses may cause homeostatic responses that move from adaptive to maladaptive with increasing exposures. At the lower 50% estimate, miscarriage causes greater loss-of-life than all cancers combined or of all cardio- and cerebral-vascular accidents combined. Surprisingly, we do not know if miscarriage rates are increasing or decreasing. Overshadowed by the magnitude of miscarriages, are insufficient data on teratogenic or epigenetic imbalances in surviving embryos and their stem cells. Superimposed on the difficult normal trajectory for peri-gastrulation embryos are added malnutrition, hormonal, and environmental stresses. An overarching hypothesis is that high throughput screens (HTS) using cultured viable reporter embryonic and placental stem cells (e.g., embryonic stem cells [ESC] and trophoblast stem cells [TSC] that report status using fluorescent reporters in living cells) from the pre-gastrulation embryo will most rapidly test a range of hormonal, environmental, nutritional, drug, and diet supplement stresses that decrease stem cell proliferation and imbalance stemness/differentiation. A second hypothesis is that TSC respond with greater sensitivity in magnitude to stress that would cause miscarriage, but ESC are stress-resistant to irreversible stemness loss and are best used to predict long-term health defects. DevTox testing needs more ESC and TSC HTS to model environmental stresses leading to miscarriage or teratogenesis and more research on epidemiology of stress and miscarriage. This endeavor also requires a shift in emphasis on pre- and early gastrulation events during the difficult period of maximum loss by miscarriage.


Asunto(s)
Aborto Espontáneo , Femenino , Humanos , Embarazo , Células Madre Embrionarias , Placenta , Trofoblastos/fisiología
10.
Stem Cells Dev ; 31(11-12): 296-310, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35678645

RESUMEN

Lowest observable adverse effects level (LOAEL) is a standard point-of-departure dose in toxicology. However, first observable adverse effects level (FOAEL) was recently reported and is used, in this study, as one criterion to detect a mutagenic stimulus in a live imager. Fluorescence ubiquitinated cell cycle indicator (FUCCI) embryonic stem cells (ESC) are green in the S-G2-M phase of the cell cycle and not green in G1-phase. Standard media change here is a mild stress that delays G1-phase and media change increases green 2.5- to 5-fold. Since stress is mild, media change rapidly increases green cell number, but higher stresses of environmental toxicants and positive control hyperosmotic stress suppress increased green after media change. Perfluoro-octanoic acid (PFOA) and diethyl phthalate (DEP) previously suppressed progression of nongreen to green cell cycle progression. Here, bisphenol A (BPA), cortisol, and positive control hyperosmotic sorbitol also suppress green fluorescence, but benzo(a)pyrene (BaP) at high doses (10 µM) increases green fluorescence throughout the 74-h exposure. Since any stress can affect many cell cycle phases, messenger RNA (mRNA) markers are best interpreted in ratios as dose-dependent mutagens increase in G2/G1 and nonmutagens increase G1/G2. After 74-h exposure, RNAseq detects G1 and G2 markers and increasing BaP doses increase G2/G1 ratios but increasing hyperosmotic sorbitol and PFOA doses increase G1/G2 marker ratios. BaP causes rapid green increase in FOAEL at 2 h of stimulus, whereas retinoic acid caused significant green fluorescence increases only late in culture. Using a live imager to establish FOAEL and G2 delay with FUCCI ESC is a new method to allow commercial and basic developmental biologists to detect drugs and environmental stimuli that are mutagenic. Furthermore, it can be used to test compounds that prevent mutations. In longitudinal studies, uniquely provided by this viable reporter and live imager protocol, follow-up can be done to test whether the preventative compound itself causes harm.


Asunto(s)
Benzo(a)pireno , Mutágenos , Benzo(a)pireno/toxicidad , Caprilatos , Ciclo Celular , División Celular , Células Madre Embrionarias , Fluorescencia , Mutágenos/toxicidad , Sorbitol/farmacología
11.
Nitric Oxide ; 124: 32-38, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35513289

RESUMEN

Inducible nitric oxide synthase (iNOS) is a zinc-containing hemoprotein composed of two identical subunits, each containing a reductase and an oxygenase domain. The reductase domain contains binding sites for NADPH, FAD, FMN, and tightly bound calmodulin and the oxygenase domain contains binding sites for heme, tetrahydrobiopterin (H4B), and l-arginine. The enzyme converts l-arginine into nitric oxide (NO) and citrulline in the presence of O2. It has previously been demonstrated that myeloperoxidase (MPO), which catalyzes formation of hypochlorous acid (HOCl) from hydrogen peroxide (H2O2) and chloride (Cl-), is enhanced in inflammatory diseases and could be a potent scavenger of NO. Using absorbance spectroscopy and gel filtration chromatography, we investigated the role of increasing concentrations of HOCl in mediating iNOS heme destruction and subsequent subunit dissociation and unfolding. The results showed that dimer iNOS dissociation between 15 and 100 µM HOCl was accompanied by loss of heme content and NO synthesis activity. The dissociated subunits-maintained cytochrome c and ferricyanide reductase activities. There was partial unfolding of the subunits at 300 µM HOCl and above, and the subunit unfolding transition was accompanied by loss of reductase activities. These events can be prevented when the enzyme is preincubated with melatonin prior to HOCl addition. Melatonin supplementation to patients experiencing low NO levels due to inflammatory diseases may be helpful to restore physiological NO functions.


Asunto(s)
Hemo , Melatonina , Arginina/metabolismo , Hemo/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Ácido Hipocloroso/metabolismo , Melatonina/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Oxidorreductasas/metabolismo , Oxigenasas/metabolismo , Zinc
12.
Am J Obstet Gynecol ; 226(3): 379-383, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34111406

RESUMEN

In the past, the reproductive freedom of African American women was hindered by forced reproduction and sterilization campaigns. Unfortunately, these involuntary practices have now mostly been replaced by inequality because of disproportionate tubal factor infertility rates within African American communities. Our work aimed to describe the inequities in increased rates of pelvic inflammatory disease and tubal factor infertility as it relates to African American women. In addition, we highlighted the need for improved access to screening and treatment of sexually transmitted infections, access to barrier contraception, and health literacy related to the understanding and prevention of tubal factor infertility in African American women.


Asunto(s)
Infertilidad Femenina , Infertilidad , Enfermedad Inflamatoria Pélvica , Negro o Afroamericano , Femenino , Libertad , Humanos , Infertilidad/complicaciones , Infertilidad Femenina/etiología , Enfermedad Inflamatoria Pélvica/diagnóstico , Reproducción
13.
Reprod Sci ; 29(11): 3055-3077, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34515982

RESUMEN

Intraperitoneal adhesions complicate over half of abdominal-pelvic surgeries with immediate, short, and long-term sequelae of major healthcare concern. The pathogenesis of adhesion development is similar to the pathogenesis of wound healing in all tissues, which if unchecked result in production of fibrotic conditions. Given the similarities, we explore the published literature to highlight the similarities in the pathogenesis of intra-abdominal adhesion development (IPAD) and other fibrotic diseases such as keloids, endometriosis, uterine fibroids, bronchopulmonary dysplasia, and pulmonary, intraperitoneal, and retroperitoneal fibrosis. Following a literature search using PubMed database for all relevant English language articles up to November 2020, we reviewed relevant articles addressing the genetic and epidemiological similarities and differences in the pathogenesis and pathobiology of fibrotic diseases. We found genetic and epidemiological similarities and differences between the pathobiology of postoperative IPAD and other diseases that involve altered fibroblast-derived cells. We also found several genes and single nucleotide polymorphisms that are up- or downregulated and whose products directly or indirectly increase the propensity for postoperative adhesion development and other fibrotic diseases. An understanding of the similarities in pathophysiology of adhesion development and other fibrotic diseases contributes to a greater understanding of IPAD and these disease processes. At a very fundamental level, blocking changes in the expression or function of genes necessary for the transformation of normal to altered fibroblasts may curtail adhesion formation and other fibrotic disease since this is a prerequisite for their development. Similarly, applying measures to induce apoptosis of altered fibroblast may do the same; however, apoptosis should be at a desired level to simultaneously ameliorate development of fibrotic diseases while allowing for normal healing. Scientists may use such information to develop pharmacologic interventions for those most at risk for developing these fibrotic conditions.


Asunto(s)
Endometriosis , Femenino , Humanos , Endometriosis/metabolismo , Fibroblastos/metabolismo , Fibrosis , Adherencias Tisulares/metabolismo , Cicatrización de Heridas
14.
F S Rep ; 2(4): 468-471, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34934989

RESUMEN

OBJECTIVE: To highlight the management of massive ovarian edema in young reproductive-age women. DESIGN: A case report of a healthy female with clitoromegaly and elevated androgen levels secondary to massive ovarian edema. SETTING: Reproductive Endocrinology and Infertility Department of an academic hospital. PATIENT: A healthy 20-year-old woman who presented for routine gynecological care and was found to have a 2-cm clitoromegaly and elevated androgen levels. INTERVENTIONS: The patient underwent a diagnostic laparoscopy and right oophorectomy. MAIN OUTCOME MEASURES: Measurement of androgen levels. RESULTS: Final pathology showed massive edema of the ovary with no evidence of malignancy or androgen-secreting tumor cells. In addition, resolution of the elevated androgen levels was observed. CONCLUSIONS: Massive ovarian edema due to asymptomatic subacute torsion should be included in the differential diagnosis of reproductive-age patients who present with ovarian mass and hyperandrogenemia within the tumor range. Although not performed in our case, conservative management that involves detorsion, ovarian biopsy, and oophoropexy to prevent a recurrence should be the treatment of choice.

15.
Stem Cell Rev Rep ; 17(6): 2164-2177, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34155611

RESUMEN

Stress-induced changes in viral receptor and susceptibility gene expression were measured in embryonic stem cells (ESC) and differentiated progeny. Rex1 promoter-Red Fluorescence Protein reporter ESC were tested by RNAseq after 72hr exposures to control stress hyperosmotic sorbitol under stemness culture (NS) to quantify stress-forced differentiation (SFD) transcriptomic programs. Control ESC cultured with stemness factor removal produced normal differentiation (ND). Bulk RNAseq transcriptomic analysis showed significant upregulation of two genes involved in Covid-19 cell uptake, Vimentin (VIM) and Transmembrane Serine Protease 2 (TMPRSS2). SFD increased the hepatitis A virus receptor (Havcr1) and the transplacental Herpes simplex 1 (HSV1) virus receptor (Pvrl1) compared with ESC undergoing ND. Several other coronavirus receptors, Glutamyl Aminopeptidase (ENPEP) and Dipeptidyl Peptidase 4 (DPP4) were upregulated significantly in SFD>ND. Although stressed ESC are more susceptible to infection due to increased expression of viral receptors and decreased resistance, the necessary Covid-19 receptor, angiotensin converting enzyme (ACE)2, was not expressed in our experiments. TMPRSS2, ENPEP, and DPP4 mediate Coronavirus uptake, but are also markers of extra-embryonic endoderm (XEN), which arise from ESC undergoing ND or SFD. Mouse and human ESCs differentiated to XEN increase TMPRSS2 and other Covid-19 uptake-mediating gene expression, but only some lines express ACE2. Covid-19 susceptibility appears to be genotype-specific and not ubiquitous. Of the 30 gene ontology (GO) groups for viral susceptibility, 15 underwent significant stress-forced changes. Of these, 4 GO groups mediated negative viral regulation and most genes in these increase in ND and decrease with SFD, thus suggesting that stress increases ESC viral susceptibility. Taken together, the data suggest that a control hyperosmotic stress can increase Covid-19 susceptibility and decrease viral host resistance in mouse ESC. However, this limited pilot study should be followed with studies in human ESC, tests of environmental, hormonal, and pharmaceutical stressors and direct tests for infection of stressed, cultured ESC and embryos by Covid-19.


Asunto(s)
COVID-19/genética , COVID-19/virología , Interacciones Microbiota-Huesped/genética , Células Madre Embrionarias de Ratones/virología , Animales , Diferenciación Celular/genética , Células Cultivadas , Expresión Génica/genética , Humanos , Ratones , Proyectos Piloto , Regiones Promotoras Genéticas/genética , SARS-CoV-2/patogenicidad
16.
Front Toxicol ; 3: 709747, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35295126

RESUMEN

Fluorescent ubiquitination-based cell cycle indicator (FUCCI) embryonic stem cells (ESCs), which fluoresce green during the S-G2-M phases, generate an S-shaped curve for the accumulation of cells during normal stemness (NS) culture with leukemia-inhibitory factor (LIF). Since it was hypothesized that a culture of ESCs was heterogeneous in the cell cycle, it was expected that increased S-G2-M-phases of the cell cycle would make an S-shaped curve parallel to the accumulation curve. Unexpectedly, it was observed that the fraction of FUCCI ESCs in green decreases over time to a nadir at ∼24 h after previous feeding and then rapidly enters S-G2-M-phases after medium change. G1 delay by infrequent medium change is a mild stress, as it does not affect growth significantly when frequency is increased to 12 h. Perfluoro-octanoic acid (PFOA) and diethyl phthalate (DEP) were used as examples of members of the per- and polyfluoroalkyl substances (PFAS) and phthalate families of chemicals, respectively. Two adverse outcomes were used to compare dose- and time-dependent effects of PFOA and DEP. The first was cell accumulation assay by time-lapse confluence measurements, largely at Tfinal/T74 h. The second was by quantifying dominant toxicant stress shown by the suppression of mild stress that creates a green fed/unfed peak. In terms of speed, PFOA is 26 times faster than DEP for producing a time-dependent LOAEL dose at 100 uM (that is, 2 h for PFOA and 52 h for DEP). PFOA has 1000-fold more sensitive LOAEL doses than DEP for suppressing ESC accumulation (confluence) at day 3 and day 2. There were two means to compare the magnitude of the growth suppression of PFOA and DEP. For the suppression of the accumulation of cells measured by confluence at Tfinal/T74h, there was a 13-fold suppression at the highest dose of PFOA > the highest dose of DEP. For the suppression of entry into the cell cycle after the G1 phase by stress on day 1 and 2, there is 10-fold more suppression by PFOA than DEP. The data presented here suggest that FUCCI ESCs can assay the suppression of accumulated growth or predict the suppression of future growth by the suppression of fed/unfed green fluorescence peaks and that PFOA's adverse effects are faster and larger and can occur at more sensitive lower doses than DEP.

17.
Reprod Sci ; 28(8): 2076-2086, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33090376

RESUMEN

Adhesions are permanent fibrovascular bands between peritoneal surfaces, which develop following virtually all body cavity surgeries. The susceptibility to develop, and the severity, of adhesions following intra-abdominal surgery varies within and between individuals, suggesting that heritable factors influence adhesion development. In this manuscript, we discuss the pathophysiology of adhesion development from the perspective of genetic susceptibility. We restrict our discussion to genes and single-nucleotide polymorphisms (SNPs) that are specifically involved in, or that cause modification of, the adhesion development process. We performed a literature search using the PubMed database for all relevant English language articles up to March 2020 (n = 186). We identified and carefully reviewed all relevant articles addressing genetic mutations or single-nucleotide polymorphisms (SNPs) that impact the risk for adhesion development. We also reviewed references from these articles for additional information. We found several reported SNPs, genetic mutations, and upregulation of messenger RNAs that directly or indirectly increase the propensity for postoperative adhesion development, namely in genes for transforming growth factor beta, vascular endothelial growth factor, interferon-gamma, matrix metalloproteinase, plasminogen activator inhibitor-1, and the interleukins. An understanding of genetic variants could provide insight into the pathophysiology of adhesion development. The information presented in this review contributes to a greater understanding of adhesion development at the genetic level and may allow modification of these genetic risks, which may subsequently guide management in preventing and treating this challenging complication of abdominal surgery. In particular, the information could help identify patients at greater risk for adhesion development, which would make them candidates for anti-adhesion prophylaxis. Currently, agents to reduce postoperative adhesion development exist, and in the future, development of agents, which specifically target individual genetic profile, would be more specific in preventing intraperitoneal adhesion development.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedades Peritoneales/genética , Polimorfismo de Nucleótido Simple , Complicaciones Posoperatorias/genética , Humanos , Enfermedades Peritoneales/etiología , Adherencias Tisulares/etiología , Adherencias Tisulares/genética
18.
Case Rep Obstet Gynecol ; 2020: 9210651, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32089920

RESUMEN

OBJECTIVE: To describe a case of successful oocyte retrieval, fertilization and clinical pregnancy despite very low ß-hCG level, twelve hours after ovulation trigger. DESIGN: Case report. Setting. Academic medical center. Patient. A 38-year-old patient inadvertently administered 2,000 IU hCG for final oocyte maturation; serum hCG twelve hours later was 16 IU/L. Interventions. Effort to obtain and administer a booster dose of hCG over the next twenty-seven hours failed. Main Outcome. Successful oocyte retrieval. RESULTS: Fourteen oocytes were retrieved of which twelve were in metaphase II and nine fertilized after intracytoplasmic sperm injection (ICSI). Of these, eight embryos survived to day 5 and were subjected to preimplantation genetic screening (PGS) by comparative genomic hybridization (CGH). Results were available the next day, three of the embryos were euploid and one was transferred on day 6. Pregnancy was confirmed twelve days later and currently the patient has an ongoing singleton intrauterine pregnancy. CONCLUSION: Reproductive Endocrinology and Infertility specialists should be aware that final oocyte maturation could occur following injection of a lower dose of hCG with excellent fertilization rate and embryo development.

19.
Free Radic Res ; 54(1): 43-56, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31909639

RESUMEN

Caspase-3 is involved in apoptosis. Here, we examine whether hypochlorous acid (HOCl), a final product of myeloperoxidase (MPO), is a modulator of caspase-3 at relatively low concentrations and also its application on metaphase II mouse oocytes. We utilised caspase-3 activity assay, TUNEL assay, the CellEvent caspase 3/7 fluorescent assay, and the MPO/hydrogen peroxide (H2O2) system on mouse oocytes with and without cumulus cells to examine whether low concentrations of HOCl mediate apoptosis by inhibition of caspase-3. A UV-visible spectrophotometer was used to study caspase-3 activity. To determine whether HOCl mediates apoptosis in mouse oocytes, two different concentrations (10 and 100 µM) of HOCl generated by the MPO/H2O2 system were used as treatments (10 µM had little effect on oocyte quality, while 100 µM showed significant deterioration). Induction of apoptotic cell death was determined by TUNEL Assay and the CellEvent caspase 3/7. HOCl mediates caspase-3 inactivation in a dose dependent manner. Subsequent addition of dithiothreitol caused recovery of caspase-3 activity indicating involvement of the oxidation of the Cys-thiol group. Accumulation of HOCl generated by MPO in the presence of caspase-3 also inhibits MPO but requires higher HOCl concentrations, indicating specificity of lower HOCl concentrations to inhibition of caspase-3. Exposure of oocytes to lower HOCl concentrations generated by MPO-H2O2 system prevents MPO-mediated apoptosis whereas exposure to higher HOCl (100 µM) showed apoptosis. Similar results were observed by using the CellEvent caspase 3/7 assay. Low concentrations of HOCl inhibit caspase-3 activity, and may play a role in regulating apoptosis, thus affecting oocyte quality.HighlightsCaspase-3 is involved in apoptosis pathway and loss of this regulation is seen in several diseases.These conditions are associated with inflammation and higher myeloperoxidase (MPO) activity.We examined whether hypochlorous acid (HOCl), generated by MPO, is a modulator of caspase-3.Caspase-3 activity showed a dose dependent decrease with HOCl and this reaction was reversible.HOCl modulates caspase-3 activity and may play a physiological role in regulating apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasa 3/efectos de los fármacos , Ácido Hipocloroso/uso terapéutico , Animales , Femenino , Humanos , Masculino , Ratones
20.
J Inorg Biochem ; 203: 110911, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31734539

RESUMEN

Here, we show that mesna (sodium-2-mercaptoethane sulfonate), primarily used to prevent nephrotoxicity and urinary tract toxicity caused by chemotherapeutic agents such as cyclophosphamide and ifosfamide, modulates the catalytic activity of lactoperoxidase (LPO) by binding tightly to the enzyme, functioning either as a one electron substrate for LPO Compounds I and II, destabilizing Compound III. Lactoperoxidase is a hemoprotein that utilizes hydrogen peroxide (H2O2) and thiocyanate (SCN-) to produce hypothiocyanous acid (HOSCN), an antimicrobial agent also thought to be associated with carcinogenesis. Our results revealed that mesna binds stably to LPO within the SCN- binding site, dependent of the heme iron moiety, and its combination with LPO-Fe(III) is associated with a disturbance in the water molecule network in the heme cavity. At low concentrations, mesna accelerated the formation and decay of LPO compound II via its ability to serve as a one electron substrate for LPO compounds I and II. At higher concentrations, mesna also accelerated the formation of Compound II but it decays to LPO-Fe(III) directly or through the formation of an intermediate, Compound I*, that displays characteristic spectrum similar to that of LPO Compound I. Mesna inhibits LPO's halogenation activity (IC50 value of 9.08 µM) by switching the reaction from a 2e- to a 1e- pathway, allowing the enzyme to function with significant peroxidase activity (conversion of H2O2 to H2O without generation of HOSCN). Collectively, mesna interaction with LPO may serve as a potential mechanism for modulating its steady-state catalysis, impacting the regulation of local inflammatory and infectious events.


Asunto(s)
Inhibidores Enzimáticos/química , Lactoperoxidasa/antagonistas & inhibidores , Mesna/química , Sustancias Protectoras/química , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...