Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cancer Res ; 22(3): 254-267, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38153436

RESUMEN

Survival of dormant, disseminated breast cancer cells contributes to tumor relapse and metastasis. Women with a body mass index greater than 35 have an increased risk of developing metastatic recurrence. Herein, we investigated the effect of diet-induced obesity (DIO) on primary tumor growth and metastatic progression using both metastatic and systemically dormant mouse models of breast cancer. This approach led to increased PT growth and pulmonary metastasis. We developed a novel protocol to induce obesity in Balb/c mice by combining dietary and hormonal interventions with a thermoneutral housing strategy. In contrast to standard housing conditions, ovariectomized Balb/c mice fed a high-fat diet under thermoneutral conditions became obese over a period of 10 weeks, resulting in a 250% gain in fat mass. Obese mice injected with the D2.OR model developed macroscopic pulmonary nodules compared with the dormant phenotype of these cells in mice fed a control diet. Analysis of the serum from obese Balb/c mice revealed increased levels of FGF2 as compared with lean mice. We demonstrate that serum from obese animals, exogenous FGF stimulation, or constitutive stimulation through autocrine and paracrine FGF2 is sufficient to break dormancy and drive pulmonary outgrowth. Blockade of FGFR signaling or specific depletion of FGFR1 prevented obesity-associated outgrowth of the D2.OR model. IMPLICATIONS: Overall, this study developed a novel DIO model that allowed for demonstration of FGF2:FGFR1 signaling as a key molecular mechanism connecting obesity to breakage of systemic tumor dormancy and metastatic progression.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Animales , Ratones , Neoplasias de la Mama/genética , Factor 2 de Crecimiento de Fibroblastos , Recurrencia Local de Neoplasia , Obesidad/complicaciones , Transducción de Señal , Ratones Endogámicos BALB C , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética
2.
Cancer Immunol Immunother ; 71(12): 3043-3056, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35622118

RESUMEN

The production of adenosine by CD73 on cancer cells in the tumor microenvironment is a recognized immunosuppressive mechanism contributing to immune evasion in many solid tumors. While NK cells have been purported to overexpress CD73 under certain conditions, this phenomenon has remained elusive and unclear. We have found that while NK cells are able to upregulate expression of CD73 on their surface when exposed to CD73+ cancer cells, this upregulation is not universal, nor is it often substantial. Rather, our data point to the extent of CD73 expression on NK cells to be both cancer-specific and environmentally-driven, and largely limited in intensity. We found that NK cell overexpression of CD73 responds to the level of CD73 on cancer cells and is enhanced in hypoxia. Interestingly, human CD73+ NK cells appear hyperfunctional in vitro compared to CD73- NK cells, suggesting that CD73 expression could be a bystander of NK cell activation. In addition, glioblastoma patient data show that tumor-infiltrating NK cells express CD73 variably, depending on donor, and present lower expression of CD16, alongside patient-specific changes in CEACAM1, CXCR3 and TIM-3, suggesting some functional changes in NK cell responses associated with expression of CD73 on NK cells in vivo. Taken together, our study is the first to show that while NK cells are largely resistant to the upregulation of CD73, CD73 expression is inducible on NK cells in response to CD73 on cancer cells, and these cells are associated with distinct functional signatures.


Asunto(s)
Glioblastoma , Células Asesinas Naturales , Humanos , Adenosina/metabolismo , Glioblastoma/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Células Asesinas Naturales/metabolismo , Microambiente Tumoral
3.
Cancer Res Commun ; 2(10): 1104-1118, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36969745

RESUMEN

SH2 containing protein tyrosine phosphatase-2 (SHP2) is recognized as a druggable oncogenic phosphatase that is expressed in both tumor cells and immune cells. How tumor cell-autonomous SHP2 contributes to an immunosuppressive tumor microenvironment (TME) and therapeutic failure of immune checkpoint blockades in metastatic breast cancer (MBC) is not fully understood. Herein, we utilized systemic SHP2 inhibition and inducible genetic depletion of SHP2 to investigate immune reprogramming during SHP2 targeting. Pharmacologic inhibition of SHP2 sensitized MBC cells growing in the lung to α-programmed death ligand 1 (α-PD-L1) antibody treatment via relieving T-cell exhaustion induced by checkpoint blockade. Tumor cell-specific depletion of SHP2 similarly reduced pulmonary metastasis and also relieved exhaustion markers on CD8+ and CD4+ cells. Both systemic SHP2 inhibition and tumor cell-autonomous SHP2 depletion reduced tumor-infiltrated CD4+ T cells and M2-polarized tumor-associated macrophages. Analysis of TCGA datasets revealed that phosphorylation of SHP2 is important for immune-cell infiltration, T-cell activation and antigen presentation. To investigate this mechanistically, we conducted in vitro T-cell killing assays, which demonstrated that pretreatment of tumor cells with FGF2 and PDGF reduced the cytotoxicity of CD8+ T cells in a SHP2-dependent manner. Both growth factor receptor signaling and three-dimensional culture conditions transcriptionally induced PD-L1 via SHP2. Finally, SHP2 inhibition reduced MAPK signaling and enhanced STAT1 signaling, preventing growth factor-mediated suppression of MHC class I. Overall, our findings support the conclusion that tumor cell-autonomous SHP2 is a key signaling node utilized by MBC cells to engage immune-suppressive mechanisms in response to diverse signaling inputs from TME. Significance: Findings present inhibition of SHP2 as a therapeutic option to limit breast cancer metastasis by promoting antitumor immunity.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Linfocitos T CD8-positivos , Antígeno B7-H1 , Terapia de Inmunosupresión , Transducción de Señal , Microambiente Tumoral , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...