Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(12): 9092-9099, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38479375

RESUMEN

Experimental setups for charge transport measurements are typically not compatible with the ultrahigh vacuum conditions for chemical doping, limiting the charge carrier density that can be investigated by transport methods. Field-effect methods, including dielectric gating and ionic liquid gating, achieve too low a carrier density to induce electronic phase transitions. To bridge this gap, we developed an integrated flip-chip method to dope graphene by alkali vapor in the diffusive regime, suitable for charge transport measurements at ultrahigh charge carrier density. We introduce a cesium droplet into a sealed cavity filled with inert gas to dope a monolayer graphene sample by the process of cesium atom diffusion, adsorption, and ionization at the graphene surface, with doping beyond an electron density of 4.7 × 1014 cm-2 monitored by operando Hall measurement. The sealed assembly is stable against oxidation, enabling measurement of charge transport versus temperature and magnetic field. Cyclotron mass inversion is observed via the Hall effect, indicative of the change in Fermi surface geometry associated with the Liftshitz transition at the hyperbolic M point of monolayer graphene. The transparent quartz substrate also functions as an optical window, enabling nonresonant Raman scattering. Our findings show that chemical doping, hitherto restricted to ultrahigh vacuum, can be applied in a diffusive regime at ambient pressure in an inert gas environment and thus enable charge transport studies in standard cryogenic environments.

2.
J Phys Condens Matter ; 34(5)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34783682

RESUMEN

The mineral franckeite is a naturally occurring van der Waals superlattice which has recently attracted attention for future applications in optoelectronics, biosensors and beyond. Furthermore, its stacking of incommensurately modulated 2D layers, the pseudo tetragonal Q-layer and the pseudo hexagonal H-layer, is an experimentally accessible prototype for the development of synthetic van der Waals materials and of advanced characterization methods to reveal new insights in their structure and chemistry at the atomic scale that is crucial for deep understanding of its properties. While some experimental studies have been undertaken in the past, much is still unknown on the correlation between local atomic structure and chemical composition within the layers. Here we present an investigation of the atomic structure of franckeite using state-of-the-art high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) and atom probe tomography (APT). With atomic-number image contrast in HAADF STEM direct information about both the geometric structure and its chemistry is provided. By imaging samples under different zone axes within the van der Waals plane, we propose refinements to the structure of the Q-layer and H-layer, including several chemical ordering effects that are expected to impact electronic structure calculations. Additionally, we observe and characterize stacking faults which are possible sources of differences between experimentally determined properties and calculations. Furthermore, we demonstrate advantages and discuss current limitations and perspectives of combining TEM and APT for the atomic scale characterization of incommensurately modulated von der Waals materials.

3.
Nanotechnology ; 32(4): 045502, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33049728

RESUMEN

The discovery of the field effect in graphene initiated the development of graphene field effect transistor (FET) sensors, wherein high mobility surface conduction is readily modulated by surface adsorption. For all graphene transistor sensors, low-frequency 1/f noise determines sensor resolution, and the absolute measure of 1/f noise is thus a crucial performance metric for sensor applications. Here we report a simple method for reducing 1/f noise by scaling the active area of graphene FET sensors. We measured 1/f noise in graphene FETs with size 5 µm × 5 µm to 5.12 mm × 5.12 mm, observing more than five orders of magnitude reduction in 1/f noise. We report the lowest normalized graphene 1/f noise parameter observed to date, 5 × 10-13, and we demonstrate a sulfate ion sensor with a record resolution of 1.2 × 10-3 log molar concentration units. Our work highlights the importance of area scaling in graphene FET sensor design, wherein increased channel area improves sensor resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...