Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nat Protoc ; 19(1): 60-82, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37996540

RESUMEN

Most patients with advanced malignancies are treated with severely toxic, first-line chemotherapies. Personalized treatment strategies have led to improved patient outcomes and could replace one-size-fits-all therapies, yet they need to be tailored by testing of a range of targeted drugs in primary patient cells. Most functional precision medicine studies use simple drug-response metrics, which cannot quantify the selective effects of drugs (i.e., the differential responses of cancer cells and normal cells). We developed a computational method for selective drug-sensitivity scoring (DSS), which enables normalization of the individual patient's responses against normal cell responses. The selective response scoring uses the inhibition of noncancerous cells as a proxy for potential drug toxicity, which can in turn be used to identify effective and safer treatment options. Here, we explain how to apply the selective DSS calculation for guiding precision medicine in patients with leukemia treated across three cancer centers in Europe and the USA; the generic methods are also widely applicable to other malignancies that are amenable to drug testing. The open-source and extendable R-codes provide a robust means to tailor personalized treatment strategies on the basis of increasingly available ex vivo drug-testing data from patients in real-world and clinical trial settings. We also make available drug-response profiles to 527 anticancer compounds tested in 10 healthy bone marrow samples as reference data for selective scoring and de-prioritization of drugs that show broadly toxic effects. The procedure takes <60 min and requires basic skills in R.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Medicina de Precisión/métodos
2.
Cell Rep Methods ; 3(12): 100654, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38065095

RESUMEN

Current treatment selection for acute myeloid leukemia (AML) patients depends on risk stratification based on cytogenetic and genomic markers. However, the forecasting accuracy of treatment response remains modest, with most patients receiving intensive chemotherapy. Recently, ex vivo drug screening has gained traction in personalized treatment selection and as a tool for mapping patient groups based on relevant cancer dependencies. Here, we systematically evaluated the use of drug sensitivity profiling for predicting patient survival and clinical response to chemotherapy in a cohort of AML patients. We compared computational methodologies for scoring drug efficacy and characterized tools to counter noise and batch-related confounders pervasive in high-throughput drug testing. We show that ex vivo drug sensitivity profiling is a robust and versatile approach to patient prognostics that comprehensively maps functional signatures of treatment response and disease progression. In conclusion, ex vivo drug profiling can assess risk for individual AML patients and may guide clinical decision-making.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/diagnóstico
3.
Cell Death Discov ; 9(1): 435, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040674

RESUMEN

The principle of drug sensitivity testing is to expose cancer cells to a library of different drugs and measure its effects on cell viability. Recent technological advances, continuous approval of targeted therapies, and improved cell culture protocols have enhanced the precision and clinical relevance of such screens. Indeed, drug sensitivity testing has proven diagnostically valuable for patients with advanced hematologic cancers. However, different cell types behave differently in culture and therefore require optimized drug screening protocols to ensure that their ex vivo drug sensitivity accurately reflects in vivo drug responses. For example, primary chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) cells require unique microenvironmental stimuli to survive in culture, while this is less the case for acute myeloid leukemia (AML) cells. Here, we present our optimized and validated protocols for culturing and drug screening of primary cells from AML, CLL, and MM patients, and a generic protocol for cell line models. We also discuss drug library designs, reproducibility, and quality controls. We envision that these protocols may serve as community guidelines for the use and interpretation of assays to monitor drug sensitivity in hematologic cancers and thus contribute to standardization. The read-outs may provide insight into tumor biology, identify or confirm treatment resistance and sensitivity in real time, and ultimately guide clinical decision-making.

5.
Nat Commun ; 14(1): 115, 2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611026

RESUMEN

Aberrant pro-survival signaling is a hallmark of cancer cells, but the response to chemotherapy is poorly understood. In this study, we investigate the initial signaling response to standard induction chemotherapy in a cohort of 32 acute myeloid leukemia (AML) patients, using 36-dimensional mass cytometry. Through supervised and unsupervised machine learning approaches, we find that reduction of extracellular-signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK) phosphorylation in the myeloid cell compartment 24 h post-chemotherapy is a significant predictor of patient 5-year overall survival in this cohort. Validation by RNA sequencing shows induction of MAPK target gene expression in patients with high phospho-ERK1/2 24 h post-chemotherapy, while proteomics confirm an increase of the p38 prime target MAPK activated protein kinase 2 (MAPKAPK2). In this study, we demonstrate that mass cytometry can be a valuable tool for early response evaluation in AML and elucidate the potential of functional signaling analyses in precision oncology diagnostics.


Asunto(s)
Leucemia Mieloide Aguda , Medicina de Precisión , Humanos , Transducción de Señal , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología
6.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36573326

RESUMEN

MOTIVATION: There is a rapidly growing interest in high-throughput drug combination screening to identify synergizing drug interactions for treatment of various maladies, such as cancer and infectious disease. This creates the need for pipelines that can be used to design such screens, perform quality control on the data and generate data files that can be analyzed by synergy-finding bioinformatics applications. RESULTS: screenwerk is an open-source, end-to-end modular tool available as an R-package for the design and analysis of drug combination screens. The tool allows for a customized build of pipelines through its modularity and provides a flexible approach to quality control and data analysis. screenwerk is adaptable to various experimental requirements with an emphasis on precision medicine. It can be coupled to other R packages, such as bayesynergy, to identify synergistic and antagonistic drug interactions in cell lines or patient samples. screenwerk is scalable and provides a complete solution for setting up drug sensitivity screens, read raw measurements and consolidate different datasets, perform various types of quality control and analyze, report and visualize the results of drug sensitivity screens. AVAILABILITY AND IMPLEMENTATION: The R-package and technical documentation is available at https://github.com/Enserink-lab/screenwerk; the R source code is publicly available at https://github.com/Enserink-lab/screenwerk under GNU General Public License v3.0; bayesynergy is accessible at https://github.com/ocbe-uio/bayesynergy. Selected modules are available through Galaxy, an open-source platform for FAIR data analysis at https://oncotools.elixir.no. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Documentación , Programas Informáticos , Combinación de Medicamentos , Análisis de Datos , Ensayos Analíticos de Alto Rendimiento
7.
Mol Oncol ; 16(5): 1153-1170, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34861096

RESUMEN

Most patients with chronic lymphocytic leukemia (CLL) initially respond to targeted therapies, but eventually relapse and develop resistance. Novel treatment strategies are therefore needed to improve patient outcomes. Here, we performed direct drug testing on primary CLL cells and identified synergy between eight different mitogen-activated protein kinase kinase (MEK) inhibitors and the B-cell lymphoma 2 (Bcl-2) antagonist venetoclax. Drug sensitivity was independent of immunoglobulin heavy-chain gene variable region (IGVH) and tumor protein p53 (TP53) mutational status, and CLL cells from idelalisib-resistant patients remained sensitive to the treatment. This suggests that combined MEK/Bcl-2 inhibition may be an option for high-risk CLL. To test whether sensitivity could be detected in other B-cell malignancies, we performed drug testing on cell line models of CLL (n = 4), multiple myeloma (MM; n = 8), and mantle cell lymphoma (MCL; n = 7). Like CLL, MM cells were sensitive to the MEK inhibitor trametinib, and synergy was observed with venetoclax. In contrast, MCL cells were unresponsive to MEK inhibition. To investigate the underlying mechanisms of the disease-specific drug sensitivities, we performed flow cytometry-based high-throughput profiling of 31 signaling proteins and regulators of apoptosis in the 19 cell lines. We found that high expression of the antiapoptotic proteins myeloid cell leukemia-1 (Mcl-1) or B-cell lymphoma-extra large (Bcl-xL) predicted low sensitivity to trametinib + venetoclax. The low sensitivity could be overcome by combined treatment with an Mcl-1 or Bcl-xL inhibitor. Our findings suggest that MEK/Bcl-2 inhibition has therapeutic potential in leukemia and myeloma, and demonstrate that protein expression levels can serve as predictive biomarkers for treatment sensitivities.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Leucemia , Linfoma de Células B , Mieloma Múltiple , Adulto , Apoptosis , Línea Celular Tumoral , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B/tratamiento farmacológico , Mieloma Múltiple/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
8.
PLoS One ; 16(3): e0248140, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33690666

RESUMEN

Sarcomas are a heterogeneous group of mesenchymal orphan cancers and new treatment alternatives beyond traditional chemotherapeutic regimes are much needed. So far, tumor mutation analysis has not led to significant treatment advances, and we have attempted to bypass this limitation by performing direct drug testing of a library of 353 anti-cancer compounds that are either FDA-approved, in clinical trial, or in advanced stages of preclinical development on a panel of 13 liposarcoma cell lines. We identified and validated six drugs, targeting different mechanisms and with good efficiency across the cell lines: MLN2238 -a proteasome inhibitor, GSK2126458 -a PI3K/mTOR inhibitor, JNJ-26481585 -a histone deacetylase inhibitor, triptolide-a multi-target drug, YM155 -a survivin inhibitor, and APO866 (FK866)-a nicotinamide phosphoribosyl transferase inhibitor. GR50s for those drugs were mostly in the nanomolar range, and in many cases below 10 nM. These drugs had long-lasting effect upon drug withdrawal, limited toxicity to normal cells and good efficacy also against tumor explants. Finally, we identified potential genomic biomarkers of their efficacy. Being approved or in clinical trials, these drugs are promising candidates for liposarcoma treatment.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Liposarcoma/tratamiento farmacológico , Acrilamidas/farmacología , Antineoplásicos/análisis , Antineoplásicos/química , Biomarcadores Farmacológicos , Compuestos de Boro/farmacología , Línea Celular Tumoral , Diterpenos/farmacología , Compuestos Epoxi/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Imidazoles/farmacología , Naftoquinonas/farmacología , Fenantrenos/farmacología , Piperidinas/farmacología , Piridazinas/farmacología , Quinolinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Sulfonamidas/farmacología
9.
J Biol Chem ; 296: 100179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33303632

RESUMEN

Breakpoint Cluster Region-Abelson kinase (BCR-Abl) is a driver oncogene that causes chronic myeloid leukemia and a subset of acute lymphoid leukemias. Although tyrosine kinase inhibitors provide an effective treatment for these diseases, they generally do not kill leukemic stem cells (LSCs), the cancer-initiating cells that compete with normal hematopoietic stem cells for the bone marrow niche. New strategies to target cancers driven by BCR-Abl are therefore urgently needed. We performed a small molecule screen based on competition between isogenic untransformed cells and BCR-Abl-transformed cells and identified several compounds that selectively impair the fitness of BCR-Abl-transformed cells. Interestingly, systems-level analysis of one of these novel compounds, DJ34, revealed that it induced depletion of c-Myc and activation of p53. DJ34-mediated c-Myc depletion occurred in a wide range of tumor cell types, including lymphoma, lung, glioblastoma, breast cancer, and several forms of leukemia, with primary LSCs being particularly sensitive to DJ34. Further analyses revealed that DJ34 interferes with c-Myc synthesis at the level of transcription, and we provide data showing that DJ34 is a DNA intercalator and topoisomerase II inhibitor. Physiologically, DJ34 induced apoptosis, cell cycle arrest, and cell differentiation. Taken together, we have identified a novel compound that dually targets c-Myc and p53 in a wide variety of cancers, and with particularly strong activity against LSCs.


Asunto(s)
Antineoplásicos/farmacología , Competencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos/química , Línea Celular Tumoral , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Bibliotecas de Moléculas Pequeñas/química
10.
FASEB J ; 34(3): 3773-3791, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31945226

RESUMEN

Chronic myeloid leukemia (CML) is a stem cell disease of the bone marrow where mechanisms of inter-leukemic communication and cell-to-cell interactions are proposed to be important for optimal therapy response. Tunneling nanotubes (TNTs) are novel intercellular communication structures transporting different cargos with potential implications in therapy resistance. Here, we have investigated TNTs in CML cells and following treatment with the highly effective CML therapeutics tyrosine kinase inhibitors (TKIs) and interferon-α (IFNα). CML cells from chronic phase CML patients as well as the blast crisis phase cell lines, Kcl-22 and K562, formed few or no TNTs. Treatment with imatinib increased TNT formation in both Kcl-22 and K562 cells, while nilotinib or IFNα increased TNTs in Kcl-22 cells only where the TNT increase was associated with adherence to fibronectin-coated surfaces, altered morphology, and reduced movement involving ß1integrin. Ex vivo treated cells from chronic phase CML patients showed limited changes in TNT formation similarly to bone marrow cells from healthy individuals. Interestingly, in vivo nilotinib treatment in a Kcl-22 subcutaneous mouse model resulted in morphological changes and TNT-like structures in the tumor-derived Kcl-22 cells. Our results demonstrate that CML cells express low levels of TNTs, but CML therapeutics increase TNT formation in designated cell models indicating TNT functionality in bone marrow derived malignancies and their microenvironment.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Interferón-alfa/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Comunicación Celular/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Integrina beta1/metabolismo , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones , Microscopía Electrónica de Rastreo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Oncotarget ; 8(14): 22606-22615, 2017 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-28186983

RESUMEN

Tyrosine kinase inhibitors (TKI) are the mainstay treatment of BCR-ABL1-positive leukemia and virtually all patients with chronic myeloid leukemia in chronic phase (CP CML) respond to TKI therapy. However, there is limited information on the cellular mechanisms of response and particularly on the effect of cell differentiation state to TKI sensitivity in vivo and ex vivo/in vitro. We used multiple, independent high-throughput drug sensitivity and resistance testing platforms that collectively evaluated 295 oncology compounds to characterize ex vivo drug response profiles of primary cells freshly collected from newly-diagnosed patients with BCR-ABL1-positive leukemia (n = 40) and healthy controls (n = 12). In contrast to the highly TKI-sensitive cells from blast phase CML and Philadelphia chromosome-positive acute lymphoblastic leukemia, primary CP CML cells were insensitive to TKI therapy ex vivo. Despite maintaining potent BCR-ABL1 inhibitory activity, ex vivo viability of cells was unaffected by TKIs. These findings were validated in two independent patient cohorts and analysis platforms. All CP CML patients under study responded to TKI therapy in vivo. When CP CML cells were sorted based on CD34 expression, the CD34-positive progenitor cells showed good sensitivity to TKIs, whereas the more mature CD34-negative cells were markedly less sensitive. Thus in CP CML, TKIs predominantly target the progenitor cell population while the differentiated leukemic cells (mostly cells from granulocytic series) are insensitive to BCR-ABL1 inhibition. These findings have implications for drug discovery in CP CML and indicate a fundamental biological difference between CP CML and advanced forms of BCR-ABL1-positive leukemia.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Diferenciación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de Fusión bcr-abl/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Estudios de Cohortes , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/clasificación , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Células Tumorales Cultivadas
13.
Nucleic Acids Res ; 42(11): 7057-68, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24753426

RESUMEN

Robustness and completion of DNA replication rely on redundant DNA replication origins. Reduced efficiency of origin licensing is proposed to contribute to chromosome instability in CDK-deregulated cell cycles, a frequent alteration in oncogenesis. However, the mechanism by which this instability occurs is largely unknown. Current models suggest that limited origin numbers would reduce fork density favouring chromosome rearrangements, but experimental support in CDK-deregulated cells is lacking. We have investigated the pattern of origin firing efficiency in budding yeast cells lacking the CDK regulators Cdh1 and Sic1. We show that each regulator is required for efficient origin activity, and that both cooperate non-redundantly. Notably, origins are differentially sensitive to CDK deregulation. Origin sensitivity is independent on normal origin efficiency, firing timing or chromosomal location. Interestingly, at a chromosome arm, there is a shortage of origin firing involving active and dormant origins, and the extent of shortage correlates with the severity of CDK deregulation and chromosome instability. We therefore propose that CDK deregulation in G1 phase compromises origin redundancy by decreasing the number of active and dormant origins, leading to origin shortage and increased chromosome instability.


Asunto(s)
Proteínas Cdh1/fisiología , Inestabilidad Cromosómica , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Replicación del ADN , Origen de Réplica , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas Cdh1/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Momento de Replicación del ADN , Eliminación de Gen , Dosificación de Gen , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA