Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; 14(21): 4690-4696, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34339584

RESUMEN

In recent decades, rechargeable Mg batteries (RMBs) technologies have attracted much attention because the use of thin Mg foil anodes may enable development of high-energy-density batteries. One of the most critical challenges for RMBs is finding suitable electrolyte solutions that enable efficient and reversible Mg cells operation. Most RMB studies concentrate on the development of novel electrolyte systems, while only few studies have focused on the practical feasibility of using pure metallic Mg as the anode material. Pure Mg metal anodes have been demonstrated to be useful in studying the fundamentals of nonaqueous Mg electrochemistry. However, pure Mg metal may not be suitable for mass production of ultrathin foils (<100 microns) due to its limited ductility. The metals industry overcomes this problem by using ductile Mg alloys. Herein, the feasibility of processing ultrathin Mg anodes in electrochemical cells was demonstrated by using AZ31 Mg alloys (3 % Al; 1 % Zn). Thin-film Mg AZ31 anodes presented reversible Mg dissolution and deposition behavior in complex ethereal Mg electrolytes solutions that was comparable to that of pure Mg foils. Moreover, it was demonstrated that secondary Mg battery prototypes comprising ultrathin AZ31 Mg alloy anodes (≈25 µm thick) and Mgx Mo6 S8 Chevrel-phase cathodes exhibited cycling performance equal to that of similar cells containing thicker pure Mg foil anodes. The possibility of using ultrathin processable Mg metal anodes is an important step in the realization of rechargeable Mg batteries.

2.
Chemphyschem ; 19(13): 1665-1673, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29668113

RESUMEN

Among many other applications, room-temperature ionic liquids (ILs) are used as electrolytes for storage and energy-conversion devices. In this work, we investigate, at the microscopic level, the structural and dynamical properties of 1-methyl-1-butyl-pyrrolidinium bis(trifluoromethanesulfonyl) imide [C4 PYR]+ [Tf2 N]- IL-based electrolytes for metal-ion batteries. We carried out molecular dynamics simulations of electrolytes mainly composed of [C4 PYR]+ [Tf2 N]- IL with the addition of Mn+ -[Tf2 N]- metal salts (M=Li+ , Na+ , Ni2+ , Zn2+ , Co2+ , Cd2+ , and Al3+ , n=1, 2, and 3) dissolved in the IL. The addition of low salt concentrations lowers the charge transport and conductivity of the electrolytes. This effect is due to the strong interaction of the metal cations with the [Tf2 N]- anions, which allows for molecular aggregation between them. We analyze how the conformation of the [Tf2 N]- anions surrounding the metal cations determine the charge-transport properties of the electrolyte. We found two main conformations based on the size and charge of the metal cation: monodentate and bidentate (number of oxygen atoms of the anion pointing to the metal atoms). The microscopic local structure of the Mn+ -[Tf2 N]- aggregates influences the microscopic charge transport as well as the macroscopic conductivity of the total electrolyte.

3.
ChemSusChem ; 10(7): 1616-1623, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28106342

RESUMEN

Metal-air batteries are intensively studied because of their high theoretical energy-storage capability. However, the fundamental science of electrodes, electrolytes, and reaction products still needs to be better understood. In this work, the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) was chosen to study the influence of a wide range of metal cations (Mn+ ) on the electrochemical behavior of oxygen. The relevance of the theory of Lewis hard and soft acids and bases to predict satisfactorily the reduction potential of oxygen in electrolytes containing metal cations is demonstrated. Systems with soft and intermediate Mn+ acidity are shown to facilitate oxygen reduction and metal oxide formation, whereas oxygen reduction is hampered by hard acid cations such as sodium and lithium. Furthermore, DFT calculations on the energy of formation of the resulting metal oxides rationalize the effect of Mn+ on oxygen reduction. A case study on the Na-O2 system is described in detail. Among other things, the Na+ concentration of the electrolyte is shown to control the electrochemical pathway (solution precipitation vs. surface deposition) by which the discharge product grows. All in all, fundamental insights for the design of advanced electrolytes for metal-air batteries, and Na-air batteries in particular, are provided.


Asunto(s)
Líquidos Iónicos/química , Oxígeno/química , Sodio/química , Suministros de Energía Eléctrica , Electroquímica , Electrodos , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción , Teoría Cuántica
4.
ACS Appl Mater Interfaces ; 8(26): 16783-90, 2016 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-27303943

RESUMEN

Kelvin probe force microscopy in darkness and under illumination is reported to provide nanoscale-resolved surface photovoltage maps of hybrid materials. In particular, nanoscale charge injection and charge recombination mechanisms occurring in ZnO polycrystalline surfaces functionalized with Protoporphyrin IX (H2PPIX) are analyzed. Local surface potential and surface photovoltage maps not only reveal that upon molecular adsorption the bare ZnO work function increases, but also they allow study of its local dependence. Nanometer-sized regions not correlated with apparent topographic features were identified, presenting values significantly different from the average work function. Depending on the region, the response to the light excitation is different, distinguishing two relaxation processes, one faster than the other. This behavior can be explained in terms of electrons trapped closed to the molecule-semiconductor interface or electrons pushed into the ZnO bulk, respectively. Moreover, the origin of these differences is correlated with the H2PPIX-ZnO bonding and molecules configuration and aggregation. The chenodeoxycholic acid (CDCA) coadsorption leads to a more homogeneous surface potential distribution, confirming the antiaggregate effect of this additive, while the surface photovoltage is mostly dominated by the slow relaxation component. This work reveals the complexity of real device architectures with ill-defined surfaces even in a relatively simple system with only one type of dye molecule and hightlights the importance of nanoscale characterization with appropriate tools.

5.
J Am Chem Soc ; 133(50): 20156-9, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22107441

RESUMEN

Further development of quantum dot-sensitized solar cells (QDSCs) will require long-term stability in addition to the continuous increase of photovoltaic (PV) conversion efficiency achieved in the last years. We report a robust S(2-)/S(n)(2-) electrolyte that has been specifically designed for compatibility with CdSe quantum dots in sensitized solar cells. The new pyrrolidinium ionic liquid reaches 1.86% efficiency and a short-circuit current close to 14 mA·cm(-2) under air-mass 1.5 global illumination and improves the device lifetime with good photoanode stability over 240 h. PV characterization showed that the solar cell limitations relate to poor catalysis of regeneration at the counter electrode and high recombination. Further improvement of these factors in the robust electrolyte configuration may thus have a significant impact for advancing the state-of-the-art in QDSCs.

6.
Phys Chem Chem Phys ; 13(46): 20871-6, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22005779

RESUMEN

1-Dimensional nanostructured ZnO electrodes have been demonstrated to be potentially interesting for their application in solar cells. Herein, we present a novel procedure to control the ZnO nanowire optoelectronic properties by means of surface modification. The nanowire surface is functionalized with ZnO nanoparticles in order to provide an improved contact to the photoactive P3HT:PCBM film that enhances the overall power conversion efficiency of the resulting solar cell. Charge extraction and transient photovoltage measurements have been used to successfully demonstrate that the surface modified nanostructured electrode contributes in enhancing the exciton dissociating ratio and in enlarging the charge lifetime as a consequence of a reduced charge recombination. Under AM1.5G illumination, all these factors contribute to a considerably large increase in photocurrent yielding unusually high conversion efficiencies over 4% and external quantum efficiencies of 87% at 550 nm for commercially available P3HT:PCBM based solar cells. The same approach might be equally used for polymeric materials under development to overcome the record reported efficiencies.

7.
Phys Chem Chem Phys ; 13(29): 13433-40, 2011 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-21709895

RESUMEN

The influence of the Zn(2+) concentration and temperature on the electrochemical reduction of O(2) in a solution of zinc bis(trifluoromethanesulfonyl)imide (Zn(TFSI)(2)) salt in 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR(14)TFSI) ionic liquid is presented. ZnO nanocrystalline films were then electrodeposited, under enhanced O(2) reduction, at temperatures in the 75-150 °C range. Their morphology, chemical composition, structural and optical properties were analyzed. In contrast to the polar-oriented ZnO usually obtained from aqueous and conventional solvent based electrolytes, nanocrystalline films oriented along non-polar directions, (11 ̅10) and (11 ̅20), were obtained from this ionic liquid electrolyte. A significant content of carbon was detected in the films, pointing to the active participation and crucial effect of pyrrolidinium cation (and/or byproducts) during the electrodeposition. The films showed semiconducting behavior with an optical gap between 3.43 and 3.53 eV as measured by optical transmittance. Their room temperature photoluminescence spectra exhibited two different bands centered at ∼3.4 and ∼2.2 eV. The intensity ratio between both bands was found to depend on the deposition temperature. This work demonstrates the great potential of ionic liquids based electrolytes for the electrodeposition of ZnO nanocrystalline thin films with innovative microstructural and optoelectronic properties.


Asunto(s)
Líquidos Iónicos/química , Oxígeno/química , Pirrolidinas/química , Óxido de Zinc/química , Zinc/química , Cationes , Electroquímica , Imidazoles/química , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier
8.
Phys Chem Chem Phys ; 13(15): 7162-9, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21409230

RESUMEN

Extremely thin absorber (eta)-solar cells based on ZnO nanowires sensitized with a thin layer of CdSe have been prepared, using CuSCN as hole transporting material. Samples with significantly different photovoltaic performance have been analyzed and a general model of their behavior was obtained. We have used impedance spectroscopy to model the device discriminating the series resistance, the role of the hole conducting material CuSCN, and the interface process. Correlating the impedance analysis with the microstructural properties of the solar cell interfaces, a good description of the solar cell performance is obtained. The use of thick CdSe layers leads to high recombination resistances, increasing the open circuit voltage of the devices. However, there is an increase of the internal recombination in thick light absorbing layers that also inhibit a good penetration of CuSCN, reducing the photocurrent. The model will play an important role on the optimization of these devices. This analysis could have important implications for the modeling and optimization of all-solid devices using a sensitizing configuration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA