Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 71(39): 14109-14124, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37749803

RESUMEN

Soil saline-alkalization is a significant constraint for soybean production. Owing to higher genetic diversity of wild soybean, we compared the proteomic landscape of saline-alkaline stress-tolerant (SWBY032) and stress-sensitive (SWLJ092) wild soybean (Glycine soja) strains under saline and saline-alkaline stress. Out of 346 differentially expressed proteins (DEPs) specifically involved in saline-alkaline stress, 159 and 133 DEPs were identified in only SWLJ092 and SWBY032, respectively. Functional annotations revealed that more ribosome proteins were downregulated in SWLJ092, whereas more membrane transporters were upregulated in SWBY032. Moreover, protein-protein interaction analysis of 133 DEPs revealed that 14 protein-synthesis- and 2 TCA-cycle-related DEPs might alter saline-alkaline tolerance by affecting protein synthesis and amino acid metabolism. Furthermore, we confirmed G. soja tonoplast intrinsic protein (GsTIP2-1 and GsTIP2-2), inositol transporter (GsINT1), sucrose transport protein (GsSUC4), and autoinhibited Ca2+-ATPase (GsACA11) as tonoplast transporters can synergistically improve saline-alkaline tolerance in soybean, possibly by relieving the inhibition of protein synthesis and amino acid metabolism. Overall, our findings provided a foundation for molecular breeding of a saline-alkaline stress-tolerant soybean.


Asunto(s)
Fabaceae , Glycine max , Glycine max/metabolismo , Proteómica , Fabaceae/metabolismo , Proteínas de Soja/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Genotipo , Aminoácidos/metabolismo , Glicina/metabolismo
2.
Front Microbiol ; 13: 856092, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356521

RESUMEN

Sulfur, organosulfur compounds, and sulfides are essential parts of life. Microbial sulfate assimilation is among the most active and ancient metabolic activities in the sulfur cycle that operates in various ecosystems. We analyzed the molecular basis of bacterial characterization. NR1 was isolated and purified from mangrove sediments. Whole-genome sequencing indicated that the NR1 isolate was closely related to Bacillus cereus. The genome contained 5,305 functional genes with a total length of 5,420,664 bp, a GC content of 35.62%, 42 rRNA, and 107 tRNA. DBT-grown cultures exhibited DBT utilization, fleeting emergence of DBT sulfone (DBTO2), and formation of 2-hydroxybiphenyl (2-HBP). Molecular analysis of the PCR products' dsz operon revealed the presence of dszA, dszB, and dszC genes, which encoded for NR1's 90% DBT desulfurization activity. Furthermore, 17 sulfur metabolism-related genes, including genes involved in assimilation sulfate reduction, APS and PAPS, and the cys, ssu, and TST gene families, were identified. In sulfate media, alkenesulfonate was converted to sulfite and inhibited ssu enzymes. Downregulated cysK variants were associated with nrnA expression and the regulation of L-cysteine synthesis. These findings established a scientific foundation for further research and application of bacteria to mangrove rehabilitation and ecological treatment by evaluating the bacterial characterization and sulfur degradation metabolic pathway. We used whole-genome and transcriptome sequencing to examine their genetic characteristics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...