Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1411930, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881891

RESUMEN

Introduction: Sepsis is a life-threatening inflammatory condition caused by dysregulated host responses to infection. Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently discovered damage-associated molecular pattern that causes inflammation and organ injury in sepsis. Kupffer cells can be activated and polarized to the inflammatory M1 phenotype, contributing to tissue damage by producing proinflammatory mediators. We hypothesized that eCIRP promotes Kupffer cell M1 polarization in sepsis. Methods: We stimulated Kupffer cells isolated from wild-type (WT) and TLR4-/- mice with recombinant mouse (rm) CIRP (i.e., eCIRP) and assessed supernatant IL-6 and TNFα levels by ELISA. The mRNA expression of iNOS and CD206 for M1 and M2 markers, respectively, was assessed by qPCR. We induced sepsis in WT and CIRP-/- mice by cecal ligation and puncture (CLP) and assessed iNOS and CD206 expression in Kupffer cells by flow cytometry. Results: eCIRP dose- and time-dependently increased IL-6 and TNFα release from WT Kupffer cells. In TLR4-/- Kupffer cells, their increase after eCIRP stimulation was prevented. eCIRP significantly increased iNOS gene expression, while it did not alter CD206 expression in WT Kupffer cells. In TLR4-/- Kupffer cells, however, iNOS expression was significantly decreased compared with WT Kupffer cells after eCIRP stimulation. iNOS expression in Kupffer cells was significantly increased at 20 h after CLP in WT mice. In contrast, Kupffer cell iNOS expression in CIRP-/- mice was significantly decreased compared with WT mice after CLP. CD206 expression in Kupffer cells was not different across all groups. Kupffer cell M1/M2 ratio was significantly increased in WT septic mice, while it was significantly decreased in CIRP-/- mice compared to WT mice after CLP. Conclusion: Our data have clearly shown that eCIRP induces Kupffer cell M1 polarization via TLR4 pathway in sepsis, resulting in overproduction of inflammatory cytokines. eCIRP could be a promising therapeutic target to attenuate inflammation by preventing Kupffer cell M1 polarization in sepsis.


Asunto(s)
Macrófagos del Hígado , Ratones Noqueados , Proteínas de Unión al ARN , Sepsis , Animales , Macrófagos del Hígado/inmunología , Macrófagos del Hígado/metabolismo , Sepsis/inmunología , Sepsis/metabolismo , Ratones , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratones Endogámicos C57BL , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Masculino , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Modelos Animales de Enfermedad , Inflamación/inmunología , Inflamación/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Receptor de Manosa , Interleucina-6/metabolismo
2.
Front Immunol ; 15: 1403018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881893

RESUMEN

Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease primarily affecting premature neonates, marked by poorly understood pro-inflammatory signaling cascades. Recent advancements have shed light on a subset of endogenous molecular patterns, termed chromatin-associated molecular patterns (CAMPs), which belong to the broader category of damage-associated molecular patterns (DAMPs). CAMPs play a crucial role in recognizing pattern recognition receptors and orchestrating inflammatory responses. This review focuses into the realm of CAMPs, highlighting key players such as extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), cell-free DNA, neutrophil extracellular traps (NETs), histones, and extracellular RNA. These intrinsic molecules, often perceived as foreign, have the potential to trigger immune signaling pathways, thus contributing to NEC pathogenesis. In this review, we unravel the current understanding of the involvement of CAMPs in both preclinical and clinical NEC scenarios. We also focus on elucidating the downstream signaling pathways activated by these molecular patterns, providing insights into the mechanisms that drive inflammation in NEC. Moreover, we scrutinize the landscape of targeted therapeutic approaches, aiming to mitigate the impact of tissue damage in NEC. This in-depth exploration offers a comprehensive overview of the role of CAMPs in NEC, bridging the gap between preclinical and clinical insights.


Asunto(s)
Alarminas , Cromatina , Enterocolitis Necrotizante , Humanos , Enterocolitis Necrotizante/metabolismo , Enterocolitis Necrotizante/inmunología , Alarminas/metabolismo , Alarminas/inmunología , Cromatina/metabolismo , Animales , Transducción de Señal , Recién Nacido , Proteína HMGB1/metabolismo
3.
J Leukoc Biol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920274

RESUMEN

Macrophages are essential immune cells for host defense against bacterial pathogens after radiation injury. However, the role of macrophage phagocytosis in infection following radiation injury remains poorly examined. Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern that dysregulates host immune system responses such as phagocytosis. We hypothesized that radiation-induced eCIRP release impairs macrophage phagocytosis of bacteria. Adult healthy mice were exposed to 6.5-Gy total body irradiation (TBI). Primary peritoneal macrophages isolated from adult healthy mice were exposed to 6.5-Gy radiation. eCIRP-neutralizing monoclonal antibody (mAb) was added to the cell culture prior to irradiation. Bacterial phagocytosis by peritoneal macrophages was assessed using pHrodo Green-labeled E. coli 7 days after irradiation ex vivo and in vitro. Bacterial phagocytosis was also assessed after treatment with recombinant murine CIRP (rmCIRP). Rac1 and ARP2 protein expression in cell lysates and eCIRP levels in the peritoneal lavage were assessed by Western blotting. Bacterial phagocytosis by peritoneal macrophages was significantly decreased after irradiation compared to controls ex vivo and in vitro. Rac1 and ARP2 expression in the peritoneal macrophages were downregulated after TBI. TBI significantly increased eCIRP levels in the peritoneal cavity. rmCIRP significantly decreased bacterial phagocytosis in a dose-dependent manner. eCIRP mAb restored bacterial phagocytosis by peritoneal macrophages after irradiation. Ionizing radiation exposure impairs bacterial phagocytosis by macrophages after irradiation. Neutralization of eCIRP restores the phagocytic ability of macrophages after irradiation. Our findings elucidate a novel mechanism of immune dysfunction and provide a potential new therapeutic approach for limiting infection after radiation injury.

4.
Front Immunol ; 15: 1426682, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938563

RESUMEN

Background: The disruption of the circadian clock is associated with inflammatory and immunological disorders. BMAL2, a critical circadian protein, forms a dimer with CLOCK, activating transcription. Extracellular cold-inducible RNA-binding protein (eCIRP), released during sepsis, can induce macrophage endotoxin tolerance. We hypothesized that eCIRP induces BMAL2 expression and promotes macrophage endotoxin tolerance through triggering receptor expressed on myeloid cells-1 (TREM-1). Methods: C57BL/6 wild-type (WT) male mice were subjected to sepsis by cecal ligation and puncture (CLP). Serum levels of eCIRP 20 h post-CLP were assessed by ELISA. Peritoneal macrophages (PerM) were treated with recombinant mouse (rm) CIRP (eCIRP) at various doses for 24 h. The cells were then stimulated with LPS for 5 h. The levels of TNF-α and IL-6 in the culture supernatants were assessed by ELISA. PerM were treated with eCIRP for 24 h, and the expression of PD-L1, IL-10, STAT3, TREM-1 and circadian genes such as BMAL2, CRY1, and PER2 was assessed by qPCR. Effect of TREM-1 on eCIRP-induced PerM endotoxin tolerance and PD-L1, IL-10, and STAT3 expression was determined by qPCR using PerM from TREM-1-/- mice. Circadian gene expression profiles in eCIRP-treated macrophages were determined by PCR array and confirmed by qPCR. Induction of BMAL2 activation in bone marrow-derived macrophages was performed by transfection of BMAL2 CRISPR activation plasmid. The interaction of BMAL2 in the PD-L1 promoter was determined by computational modeling and confirmed by the BIAcore assay. Results: Serum levels of eCIRP were increased in septic mice compared to sham mice. Macrophages pre-treated with eCIRP exhibited reduced TNFα and IL-6 release upon LPS challenge, indicating macrophage endotoxin tolerance. Additionally, eCIRP increased the expression of PD-L1, IL-10, and STAT3, markers of immune tolerance. Interestingly, TREM-1 deficiency reversed eCIRP-induced macrophage endotoxin tolerance and significantly decreased PD-L1, IL-10, and STAT3 expression. PCR array screening of circadian clock genes in peritoneal macrophages treated with eCIRP revealed the elevated expression of BMAL2, CRY1, and PER2. In eCIRP-treated macrophages, TREM-1 deficiency prevented the upregulation of these circadian genes. In macrophages, inducible BMAL2 expression correlated with increased PD-L1 expression. In septic human patients, blood monocytes exhibited increased expression of BMAL2 and PD-L1 in comparison to healthy subjects. Computational modeling and BIAcore assay identified a putative binding region of BMAL2 in the PD-L1 promoter, suggesting BMAL2 positively regulates PD-L1 expression in macrophages. Conclusion: eCIRP upregulates BMAL2 expression via TREM-1, leading to macrophage endotoxin tolerance in sepsis. Targeting eCIRP to maintain circadian rhythm may correct endotoxin tolerance and enhance host resistance to bacterial infection.


Asunto(s)
Proteínas de Unión al ARN , Sepsis , Animales , Humanos , Masculino , Ratones , Factores de Transcripción ARNTL/genética , Modelos Animales de Enfermedad , Endotoxinas/inmunología , Tolerancia Inmunológica , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Sepsis/inmunología , Sepsis/metabolismo , Receptor Activador Expresado en Células Mieloides 1/inmunología , Receptor Activador Expresado en Células Mieloides 1/genética , Receptor Activador Expresado en Células Mieloides 1/metabolismo
5.
Cell Mol Immunol ; 21(7): 707-722, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789529

RESUMEN

B-1a cells, an innate-like cell population, are crucial for pathogen defense and the regulation of inflammation through their release of natural IgM and IL-10. In sepsis, B-1a cell numbers are decreased in the peritoneal cavity as they robustly migrate to the spleen. Within the spleen, migrating B-1a cells differentiate into plasma cells, leading to alterations in their original phenotype and functionality. We discovered a key player, sialic acid-binding immunoglobulin-like lectin-G (Siglec-G), which is expressed predominantly on B-1a cells and negatively regulates B-1a cell migration to maintain homeostasis. Siglec-G interacts with CXCR4/CXCL12 to modulate B-1a cell migration. Neutrophils aid B-1a cell migration via neutrophil elastase (NE)-mediated Siglec-G cleavage. Human studies revealed increased NE expression in septic patients. We identified an NE cleavage sequence in silico, leading to the discovery of a decoy peptide that protects Siglec-G, preserves peritoneal B-1a cells, reduces inflammation, and enhances sepsis survival. The role of Siglec-G in inhibiting B-1a cell migration to maintain their inherent phenotype and function is compromised by NE in sepsis, offering valuable insights into B-1a cell homeostasis. Employing a small decoy peptide to prevent NE-mediated Siglec-G cleavage has emerged as a promising strategy to sustain peritoneal B-1a cell homeostasis, alleviate inflammation, and ultimately improve outcomes in sepsis patients.


Asunto(s)
Homeostasis , Neutrófilos , Sepsis , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Sepsis/inmunología , Animales , Humanos , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Movimiento Celular , Ratones , Ratones Endogámicos C57BL , Elastasa de Leucocito/metabolismo , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B
6.
J Pediatr Surg ; 59(7): 1282-1290, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38582704

RESUMEN

INTRODUCTION: Neonatal sepsis is a devastating inflammatory condition that remains a leading cause of morbidity and mortality. Milk fat globule-EGF-factor VIII (MFG-E8) is a glycoprotein that reduces inflammation, whereas extracellular cold-inducible RNA binding protein (eCIRP) worsens inflammation. This study aimed to determine the therapeutic potential of a novel MFG-E8-derived oligopeptide 3 (MOP3) designed to clear eCIRP and protect against inflammation, organ injury, and mortality in neonatal sepsis. METHODS: C57BL6 mouse pups were injected intraperitoneally with cecal slurry (CS) and treated with MOP3 (20 µg/g) or vehicle. 10 h after injection, blood, lungs, and intestines were collected for analyses, and in a 7-day experiment, pups were monitored for differences in mortality. RESULTS: MOP3 treatment protected septic pups from inflammation by reducing eCIRP, IL-6, TNFα, and LDH. MOP3 reduced lung and intestinal inflammation and injury as assessed by reductions in tissue mRNA levels of inflammatory markers, histopathologic injury, and apoptosis in lung and intestines. MOP3 also significantly improved 7-day overall survival for CS-septic mouse pups compared to vehicle (75% vs. 46%, respectively). CONCLUSION: Deriving from MFG-E8 and designed to clear eCIRP, MOP3 protects against sepsis-induced inflammation, organ injury, and mortality in a preclinical model of neonatal sepsis, implicating it as an exciting potential new therapeutic. LEVEL OF EVIDENCE: Level 1.


Asunto(s)
Antígenos de Superficie , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Proteínas de la Leche , Sepsis Neonatal , Oligopéptidos , Animales , Ratones , Antígenos de Superficie/uso terapéutico , Sepsis Neonatal/tratamiento farmacológico , Proteínas de la Leche/uso terapéutico , Oligopéptidos/uso terapéutico , Oligopéptidos/farmacología , Proteínas de Unión al ARN/metabolismo , Animales Recién Nacidos , Pulmón/patología , Pulmón/metabolismo
7.
Cells ; 13(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38534389

RESUMEN

Micro-ribonucleic acids (miRNAs) are small sequences of genetic materials that are primarily transcribed from the intronic regions of deoxyribonucleic acid (DNAs), and they are pivotal in regulating messenger RNA (mRNA) expression. miRNAs were first discovered to regulate mRNAs of the same cell in which they were transcribed. Recent studies have unveiled their ability to traverse cells, either encapsulated in vesicles or freely bound to proteins, influencing distant recipient cells. Activities of extracellular miRNAs have been observed during acute inflammation in clinically relevant pathologies, such as sepsis, shock, trauma, and ischemia/reperfusion (I/R) injuries. This review comprehensively explores the activity of miRNAs during acute inflammation as well as the mechanisms of their extracellular transport and activity. Evaluating the potential of extracellular miRNAs as diagnostic biomarkers and therapeutic targets in acute inflammation represents a critical aspect of this review. Finally, this review concludes with novel concepts of miRNA activity in the context of alleviating inflammation, delivering potential future directions to advance the field of miRNA therapeutics.


Asunto(s)
MicroARNs , Sepsis , Humanos , MicroARNs/genética , ARN Mensajero/genética
8.
J Leukoc Biol ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38484156

RESUMEN

B-1a cells, a regulatory subset of B lymphocytes, produce natural IgM and IL-10. Neutrophil extracellular traps (NETs) play a crucial role in pathogen defense, but their excessive formation during sepsis can cause further inflammation and tissue damage. In sepsis, extracellular cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern, is released to induce NET formation. We hypothesize that B-1a cells clear NETs to prevent sepsis-induced injury. Sepsis in mice was induced by injecting 1 × 107 and 5 × 107 CFU E. coli intraperitoneally (i.p.). After 4 and 20 hours, we assessed the number of B-1a cells in the peritoneal cavity using flow cytometry. Our results showed that the number of peritoneal B-1a cells was significantly decreased in E. coli-sepsis mice. Importantly, replenishing B-1a cells via i.p. injection in sepsis mice significantly decreased NETs in peritoneal neutrophils. We also observed a decrease in serum inflammation and injury markers and a significant increase in overall survival rate in B-1a cell-treated septic mice. To understand the mechanism, we co-cultured bone marrow-derived neutrophils (BMDNs) with peritoneal B-1a cells in a contact or non-contact condition using an insert and stimulated them with eCIRP. After 4 hours, we found that eCIRP significantly increased NET formation in BMDNs. Interestingly, we observed that B-1a cells inhibited NETs by 67% in a contact-dependent manner. Surprisingly, when B-1a cells were cultured in inserts, there was no significant decrease in NET formation, suggesting that direct cell-to-cell contact is crucial for this inhibitory effect. We further determined that B-1a cells promoted NET phagocytosis and this was mediated through natural IgM, as blocking IgM receptor attenuated the engulfment of NETs by B-1a cells. Finally, we identified that following their engulfment, NETs were localized into the lysosomal compartment for lysis. Thus, our study suggests that B-1a cells decrease NET content in eCIRP-treated neutrophils and E. coli-sepsis mice.

9.
Mol Med ; 30(1): 17, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302880

RESUMEN

BACKGROUND: In sepsis, intestinal barrier dysfunction is often caused by the uncontrolled death of intestinal epithelial cells (IECs). CD4CD8αα intraepithelial lymphocytes (IELs), a subtype of CD4+ T cells residing within the intestinal epithelium, exert cytotoxicity by producing granzyme B (GrB) and perforin (Prf). Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently identified alarmin which stimulates TLR4 on immune cells to induce proinflammatory responses. Here, we hypothesized that eCIRP enhances CD4CD8αα IEL cytotoxicity and induces IEC death in sepsis. METHODS: We subjected wild-type (WT) and CIRP-/- mice to sepsis by cecal ligation and puncture (CLP) and collected the small intestines to isolate IELs. The expression of GrB and Prf in CD4CD8αα IELs was assessed by flow cytometry. IELs isolated from WT and TLR4-/- mice were challenged with recombinant mouse CIRP (eCIRP) and assessed the expression of GrB and Prf in CD4CD8αα by flow cytometry. Organoid-derived IECs were co-cultured with eCIRP-treated CD4CD8αα cells in the presence/absence of GrB and Prf inhibitors and assessed IEC death by flow cytometry. RESULTS: We found a significant increase in the expression of GrB and Prf in CD4CD8αα IELs of septic mice compared to sham mice. We found that GrB and Prf levels in CD4CD8αα IELs were increased in the small intestines of WT septic mice, while CD4CD8αα IELs of CIRP-/- mice did not show an increase in those cytotoxic granules after sepsis. We found that eCIRP upregulated GrB and Prf in CD4CD8αα IELs isolated from WT mice but not from TLR4-/- mice. Furthermore, we also revealed that eCIRP-treated CD4CD8αα cells induced organoid-derived IEC death, which was mitigated by GrB and Prf inhibitors. Finally, histological analysis of septic mice revealed that CIRP-/- mice were protected from tissue injury and cell death in the small intestines compared to WT mice. CONCLUSION: In sepsis, the cytotoxicity initiated by the eCIRP/TLR4 axis in CD4CD8αα IELs is associated with intestinal epithelial cell (IEC) death, which could lead to gut injury.


Asunto(s)
Linfocitos Intraepiteliales , Sepsis , Animales , Ratones , Mucosa Intestinal/metabolismo , Intestinos , Ratones Endogámicos C57BL , Sepsis/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
10.
Surgery ; 175(5): 1346-1351, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38342730

RESUMEN

BACKGROUND: Gut ischemia/reperfusion causes the release of damage-associated molecular patterns, leading to acute lung injury and high mortality. Cold-inducible ribonucleic acid-binding protein is a ribonucleic acid chaperon that binds the polyadenylation tail of messenger ribonucleic acid intracellularly. Upon cell stress, cold-inducible ribonucleic acid-binding protein is released, and extracellular cold-inducible ribonucleic acid-binding protein acts as a damage-associated molecular pattern, worsening inflammation. To inhibit extracellular cold-inducible ribonucleic acid-binding protein, we have recently developed an engineered polyadenylation tail named A12. Here, we sought to investigate the therapeutic potential of A12 in gut ischemia/reperfusion-induced acute lung injury. METHODS: Male C57BL6/J mice underwent superior mesenteric artery occlusion and were treated with intraperitoneal A12 (0.5 nmol/g body weight) or vehicle at the time of reperfusion. Blood and lungs were collected 4 hours after gut ischemia/reperfusion. Systemic levels of extracellular cold-inducible ribonucleic acid-binding protein, interleukin-6, aspartate transaminase, alanine transaminase, and lactate dehydrogenase were determined. The pulmonary gene expression of cytokines (interleukin-6, interleukin-1ß) and chemokines (macrophage-inflammatory protein-2, keratinocyte-derived chemokine) was also assessed. In addition, lung myeloperoxidase, injury score, and cell death were determined. Mice were monitored for 48 hours after gut ischemia/reperfusion for survival assessment. RESULTS: Gut ischemia/reperfusion significantly increased the serum extracellular cold-inducible ribonucleic acid-binding protein levels. A12 treatment markedly reduced the elevated serum interleukin-6, alanine transaminase, aspartate transaminase, and lactate dehydrogenase by 53%, 23%, 23%, and 24%, respectively, in gut ischemia/reperfusion mice. A12 also significantly decreased cytokine and chemokine messenger ribonucleic acids and myeloperoxidase activity in the lungs of gut ischemia/reperfusion mice. Histological analysis revealed that A12 attenuated tissue injury and cell death in the lungs of gut ischemia/reperfusion mice. Finally, administration of A12 markedly improved the survival of gut ischemia/reperfusion mice. CONCLUSION: A12, a novel extracellular cold-inducible ribonucleic acid-binding protein inhibitor, diminishes inflammation and mitigates acute lung injury when employed as a treatment during gut ischemia/reperfusion. Hence, the targeted approach toward extracellular cold-inducible ribonucleic acid-binding protein emerges as a promising therapeutic strategy for alleviating gut ischemia/reperfusion-induced acute lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Daño por Reperfusión , Ratones , Masculino , Animales , Interleucina-6/metabolismo , Daño por Reperfusión/etiología , Daño por Reperfusión/prevención & control , Pulmón/metabolismo , Isquemia/metabolismo , Reperfusión/efectos adversos , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/prevención & control , Lesión Pulmonar Aguda/tratamiento farmacológico , Citocinas/metabolismo , ARN Mensajero/metabolismo , ARN/metabolismo , ARN/uso terapéutico , Ratones Endogámicos C57BL , Inflamación/metabolismo , Peroxidasa/metabolismo , Lactato Deshidrogenasas/metabolismo
11.
Front Immunol ; 15: 1353990, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333215

RESUMEN

The heightened risk of ionizing radiation exposure, stemming from radiation accidents and potential acts of terrorism, has spurred growing interests in devising effective countermeasures against radiation injury. High-dose ionizing radiation exposure triggers acute radiation syndrome (ARS), manifesting as hematopoietic, gastrointestinal, and neurovascular ARS. Hematopoietic ARS typically presents with neutropenia and thrombocytopenia, while gastrointestinal ARS results in intestinal mucosal injury, often culminating in lethal sepsis and gastrointestinal bleeding. This deleterious impact can be attributed to radiation-induced DNA damage and oxidative stress, leading to various forms of cell death, such as apoptosis, necrosis and ferroptosis. Damage-associated molecular patterns (DAMPs) are intrinsic molecules released by cells undergoing injury or in the process of dying, either through passive or active pathways. These molecules then interact with pattern recognition receptors, triggering inflammatory responses. Such a cascade of events ultimately results in further tissue and organ damage, contributing to the elevated mortality rate. Notably, infection and sepsis often develop in ARS cases, further increasing the release of DAMPs. Given that lethal sepsis stands as a major contributor to the mortality in ARS, DAMPs hold the potential to function as mediators, exacerbating radiation-induced organ injury and consequently worsening overall survival. This review describes the intricate mechanisms underlying radiation-induced release of DAMPs. Furthermore, it discusses the detrimental effects of DAMPs on the immune system and explores potential DAMP-targeting therapeutic strategies to alleviate radiation-induced injury.


Asunto(s)
Síndrome de Radiación Aguda , Sepsis , Humanos , Receptores de Reconocimiento de Patrones/metabolismo , Síndrome de Radiación Aguda/etiología , Muerte Celular , Sepsis/metabolismo
12.
Front Immunol ; 15: 1347453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343542

RESUMEN

Introduction: Various immune cell types play critical roles in sepsis with numerous distinct subsets exhibiting unique phenotypes even within the same cell population. Single-cell RNA sequencing (scRNA-seq) enables comprehensive transcriptome profiling and unbiased cell classification. In this study, we have unveiled the transcriptomic landscape of immune cells in sepsis through scRNA-seq analysis. Methods: We induced sepsis in mice by cecal ligation and puncture. 20 h after the surgery, the spleen and peritoneal lavage were collected. Single-cell suspensions were processed using a 10× Genomics pipeline and sequenced on an Illumina platform. Count matrices were generated using the Cell Ranger pipeline, which maps reads to the mouse reference transcriptome, GRCm38/mm10. Subsequent scRNA-seq analysis was performed using the R package Seurat. Results: After quality control, we subjected the entire data set to unsupervised classification. Four major clusters were identified as neutrophils, macrophages, B cells, and T cells according to their putative markers. Based on the differentially expressed genes, we identified activated pathways in sepsis for each cell type. In neutrophils, pathways related to inflammatory signaling, such as NF-κB and responses to pathogen-associated molecular patterns (PAMPs), cytokines, and hypoxia were activated. In macrophages, activated pathways were the ones related to cell aging, inflammatory signaling, and responses to PAMPs. In B cells, pathways related to endoplasmic reticulum stress were activated. In T cells, activated pathways were the ones related to inflammatory signaling, responses to PAMPs, and acute lung injury. Next, we further classified each cell type into subsets. Neutrophils consisted of four clusters. Some subsets were activated in inflammatory signaling or cell metabolism, whereas others possessed immunoregulatory or aging properties. Macrophages consisted of four clusters, namely, the ones with enhanced aging, lymphocyte activation, extracellular matrix organization, or cytokine activity. B cells consisted of four clusters, including the ones possessing the phenotype of cell maturation or aging. T cells consisted of six clusters, whose phenotypes include molecular translocation or cell activation. Conclusions: Transcriptomic analysis by scRNA-seq has unveiled a comprehensive spectrum of immune cell responses and distinct subsets in the context of sepsis. These findings are poised to enhance our understanding of sepsis pathophysiology, offering avenues for targeting novel molecules, cells, and pathways to combat infectious diseases.


Asunto(s)
Moléculas de Patrón Molecular Asociado a Patógenos , Sepsis , Ratones , Animales , Perfilación de la Expresión Génica , Transcriptoma , Citocinas/metabolismo
13.
J Leukoc Biol ; 115(2): 385-400, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-37774691

RESUMEN

Sepsis is a life-threatening inflammatory condition partly orchestrated by the release of various damage-associated molecular patterns such as extracellular cold-inducible RNA-binding protein (eCIRP). Despite advances in understanding the pathogenic role of eCIRP in inflammatory diseases, novel therapeutic strategies to prevent its excessive inflammatory response are lacking. Milk fat globule-epidermal growth factor-VIII (MFG-E8) is critical for the opsonic clearance of apoptotic cells, but its potential involvement in the removal of eCIRP was previously unknown. Here, we report that MFG-E8 can strongly bind eCIRP to facilitate αvß3-integrin-dependent internalization and lysosome-dependent degradation of MFG-E8/eCIRP complexes, thereby attenuating excessive inflammation. Genetic disruption of MFG-E8 expression exaggerated sepsis-induced systemic accumulation of eCIRP and other cytokines, and consequently exacerbated sepsis-associated acute lung injury. In contrast, MFG-E8-derived oligopeptide recapitulated its eCIRP binding properties, and significantly attenuated eCIRP-induced inflammation to confer protection against sepsis. Our findings suggest a novel therapeutic approach to attenuate eCIRP-induced inflammation to improve outcomes of lethal sepsis.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Humanos , Sepsis/tratamiento farmacológico , Sepsis/patología , Inflamación/tratamiento farmacológico , Lesión Pulmonar Aguda/tratamiento farmacológico , Proteínas de la Leche/genética , Proteínas de la Leche/metabolismo , Proteínas de la Leche/farmacología , Antígenos de Superficie/metabolismo
14.
Shock ; 60(3): 450-460, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37548626

RESUMEN

ABSTRACT: Background: Sepsis reduces neutrophil apoptosis. As the result, neutrophils may become aged, exacerbating inflammation and tissue injury. Extracellular cold-inducible RNA-binding protein (eCIRP) acts as a damage-associated molecular pattern to promote inflammation and tissue injury in sepsis. SerpinB2, a serine protease inhibitor, has been shown to inhibit apoptosis. We hypothesize that eCIRP upregulates SerpinB2 to promote aged neutrophil subset by inhibiting apoptosis in sepsis. Methods: We stimulated bone marrow-derived neutrophils (BMDNs) of wild-type (WT) mice with 1 µg/mL of recombinant mouse CIRP (i.e., eCIRP) and assessed cleaved caspase-3 and SerpinB2 by western blotting. Apoptotic neutrophils were assessed by Annexin V/PI. Bone marrow-derived neutrophils were stimulated with 1 µg/mL eCIRP and treated with or without PAC-1 (caspase-3 activator) and aged neutrophils (CXCR4 hi CD62L lo ) were assessed by flow cytometry. To induce sepsis, we performed cecal ligation and puncture in WT or CIRP -/- mice. We determined the percentage of aged neutrophils and SerpinB2 + neutrophils in blood and spleen by flow cytometry. Results: We found that cleaved caspase-3 levels were increased at 4 h of PBS treatment compared with 0 h but decreased by eCIRP treatment. Extracellular cold-inducible RNA-binding protein reduced apoptotic cells after 20 h of treatment. Extracellular cold-inducible RNA-binding protein also increased the frequencies of aged neutrophils compared with PBS after 20 h, while PAC-1 treatment reduced aging in eCIRP-treated BMDNs. Extracellular cold-inducible RNA-binding protein significantly increased the expression of SerpinB2 at protein levels in BMDNs at 20 h. In WT mice, the frequencies of aged and SerpinB2 + neutrophils in blood and spleen were increased after 20 h of cecal ligation and puncture, while in CIRP -/- mice, aged and SerpinB2 + neutrophils were significantly decreased compared with WT mice. We also found that aged neutrophils expressed significantly higher levels of SerpinB2 compared with non-aged neutrophils. Conclusions: eCIRP inhibits neutrophil apoptosis to increase aged phenotype by increasing SerpinB2 expression in sepsis. Thus, targeting eCIRP could be a new therapeutic strategy to ameliorate inflammation caused by neutrophil aging in sepsis.


Asunto(s)
Neutrófilos , Sepsis , Ratones , Animales , Neutrófilos/metabolismo , Pulmón/metabolismo , Caspasa 3/metabolismo , Inflamación/metabolismo , Sepsis/metabolismo , Apoptosis , Proteínas de Unión al ARN/metabolismo , Ratones Endogámicos C57BL
15.
J Immunol ; 211(7): 1144-1153, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37585248

RESUMEN

Sepsis is an infectious inflammatory disease that often results in acute lung injury (ALI). Cold-inducible RNA-binding protein (CIRP) is an intracellular RNA chaperon that binds to mRNA's poly(A) tail. However, CIRP can be released in sepsis, and extracellular CIRP (eCIRP) is a damage-associated molecular pattern, exaggerating inflammation, ALI, and mortality. In this study, we developed an engineered poly(A) mRNA mimic, AAAAAAAAAAAA, named A12, with 2'-O-methyl ribose modification and terminal phosphorothioate linkages to protect it from RNase degradation, exhibiting an increased half-life. A12 selectively and strongly interacted with the RNA-binding motif of eCIRP, thereby preventing eCIRP's binding to its receptor, TLR4. In vitro treatment with A12 significantly decreased eCIRP-induced macrophage MAPK and NF-κB activation and inflammatory transcription factor upregulation. A12 also attenuated proinflammatory cytokine production induced by eCIRP in vitro and in vivo in macrophages and mice, respectively. We revealed that treating cecal ligation and puncture-induced sepsis with A12 significantly reduced serum organ injury markers and cytokine levels and ALI, and it decreased bacterial loads in the blood and peritoneal fluid, ultimately improving their survival. Thus, A12's ability to attenuate the clinical models of sepsis sheds lights on inflammatory disease pathophysiology and prevention of the disease progress.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Ratones , Animales , Sepsis/metabolismo , Lesión Pulmonar Aguda/genética , Inflamación , Citocinas , Transducción de Señal
16.
J Clin Invest ; 133(14)2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37463445

RESUMEN

Extracellular cold-inducible RNA-binding protein (eCIRP) is a key mediator of severity and mortality in sepsis. We found that stimulation of mouse bone marrow-derived neutrophils (BMDNs) with eCIRP generated a distinct neutrophil subpopulation, characterized by cell surface markers of both antigen-presenting cells and aged neutrophils as well as expression of IL-12, which we named antigen-presenting aged neutrophils (APANs). The frequency of APANs was significantly increased in the blood, spleen, and lungs of WT mice subjected to cecal ligation and puncture-induced sepsis but not in CIRP-/- mice. Patients with sepsis had a significant increase in circulating APAN counts compared with healthy individuals. Compared with non-APAN-transfered mice, APAN-transferred septic mice had increased serum levels of injury and inflammatory markers, exacerbated acute lung injury (ALI), and worsened survival. APANs and CD4+ T cells colocalized in the spleen, suggesting an immune interaction between these cells. APANs cocultured with CD4+ T cells significantly induced the release of IFN-γ via IL-12. BMDNs stimulated with eCIRP and IFN-γ underwent hyper-NETosis. Stimulating human peripheral blood neutrophils with eCIRP also induced APANs, and stimulating human neutrophils with eCIRP and IFN-γ caused hyper-NETosis. Thus, eCIRP released during sepsis induced APANs to aggravate ALI and worsen the survival of septic animals via CD4+ T cell activation, Th1 polarization, and IFN-γ-mediated hyper-NETosis.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Humanos , Ratones , Animales , Anciano , Neutrófilos , Linfocitos T CD4-Positivos/metabolismo , Inflamación/metabolismo , Interleucina-12/genética , Ratones Endogámicos C57BL
17.
Surgery ; 174(4): 1071-1077, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37517896

RESUMEN

BACKGROUND: Sepsis is a dysregulated host response to infection syndrome leading to life-threatening organ dysfunction. Sepsis-induced intestinal dysfunction is a key element in the progression to multisystem organ failure. The stimulator of interferon genes is an intracellular protein implicated in intestinal injury in sepsis. H151, a small molecule inhibitor of stimulator of interferon genes, has not yet been studied as a potential therapeutic in sepsis. We hypothesize that H151 therapeutically reduces sepsis-induced acute intestinal injury. METHODS: Male mice underwent cecal ligation and puncture and were treated with intraperitoneal H151 (10 mg/kg body weight) or vehicle. Intestines and serum were collected for analysis 20 hours after cecal ligation and puncture. Oral gavage of mice with FITC-dextran was performed 15 hours after cecal ligation and puncture. Five hours after gavage, serum was collected, and intestinal permeability was assessed. Mice were monitored for 10 days after cecal ligation and puncture to assess survival. RESULTS: Zonula occludens 1 tight junctional protein expression was reduced after cecal ligation and puncture and recovered with H151 treatment. This was associated with a 62.3% reduction in intestinal permeability as assessed by fluorimetry. After cecal ligation and puncture, treatment with H151 was associated with a 58.7% reduction in intestinal histopathologic injury (P < .05) and a 56.6% reduction in intestinal apoptosis (P < .05). Intestinal myeloperoxidase activity was decreased by 70.8% after H151 treatment (P < .05). Finally, H151 improved 10-day survival from 33% to 80% after cecal ligation and puncture (P = .011). CONCLUSION: H151, a novel stimulator of interferon genes inhibitor, reduces intestinal injury, inflammation, and permeability when administered as a treatment for cecal ligation and puncture-induced sepsis. Thus, targeting stimulator of interferon genes shows promise as a therapeutic strategy to ameliorate sepsis-induced acute intestinal injury.


Asunto(s)
Traumatismos Abdominales , Enfermedades Intestinales , Sepsis , Ratones , Masculino , Animales , Intestinos/lesiones , Inflamación/patología , Factores de Transcripción , Ligadura , Interferones/uso terapéutico , Modelos Animales de Enfermedad , Ciego/cirugía , Ciego/lesiones , Ciego/patología
18.
Front Immunol ; 14: 1151250, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168858

RESUMEN

Introduction: Exposure to high-dose ionizing radiation causes tissue injury, infections and even death due to immune dysfunction. The triggering receptor expressed on myeloid cells-1 (TREM-1) has been demonstrated to critically amplify and dysregulate immune responses. However, the role of TREM-1 in radiation injury remains unknown. Extracellular cold-inducible RNA-binding protein (eCIRP), a new damage-associated molecular pattern, is released from activated or stressed cells during inflammation. We hypothesized that ionizing radiation upregulates TREM-1 expression via eCIRP release to worsen survival. Methods: RAW264.7 cells and peritoneal macrophages collected from C57BL/6 wild-type (WT) mice were exposed to 5- and 10-Gray (Gy) radiation. C57BL/6 WT and CIRP-/- mice underwent 10-Gy total body irradiation (TBI). TREM-1 expression on RAW264.7 cells and peritoneal macrophages in vitro and in vivo were evaluated by flow cytometry. eCIRP levels in cell culture supernatants and in peritoneal lavage isolated from irradiated mice were evaluated by Western blotting. We also evaluated 30-day survival in C57BL/6 WT, CIRP-/- and TREM-1-/- mice after 6.5-Gy TBI. Results: The surface protein and mRNA levels of TREM-1 in RAW264.7 cells were significantly increased at 24 h after 5- and 10-Gy radiation exposure. TREM-1 expression on peritoneal macrophages was significantly increased after radiation exposure in vitro and in vivo. eCIRP levels were significantly increased after radiation exposure in cell culture supernatants of peritoneal macrophages in vitro and in peritoneal lavage in vivo. Moreover, CIRP-/- mice exhibited increased survival after 6.5-Gy TBI compared to WT mice. Interestingly, TREM-1 expression on peritoneal macrophages in CIRP-/- mice was significantly decreased compared to that in WT mice at 24 h after 10-Gy TBI. Furthermore, 30-day survival in TREM-1-/- mice was significantly increased to 64% compared to 20% in WT mice after 6.5-Gy TBI. Conclusion: Our data indicate that ionizing radiation increases TREM-1 expression in macrophages via the release of eCIRP, and TREM-1 contributes to worse survival after total body irradiation. Thus, targeting TREM-1 could have the potential to be developed as a novel medical countermeasure for radiation injury.


Asunto(s)
Macrófagos , Traumatismos por Radiación , Animales , Ratones , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Traumatismos por Radiación/genética , Traumatismos por Radiación/metabolismo , Receptor Activador Expresado en Células Mieloides 1/genética , Receptor Activador Expresado en Células Mieloides 1/metabolismo
19.
J Trauma Acute Care Surg ; 94(5): 702-709, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726195

RESUMEN

INTRODUCTION: Extracellular cold-inducible RNA-binding protein (eCIRP) is a novel mediator of inflammation and tissue injury. It has been shown that miRNA 130b-3p acts as an endogenous inhibitor of eCIRP. Because RNA mimics are unstable after in vivo administration, we have chemically engineered miRNA 130b-3p mimic (named PS-OMe miR130) to improve its stability by protection from nuclease activity. We hypothesize that PS-OMe miR130 reduces eCIRP-mediated injury and inflammation in a murine model of hepatic ischemia/reperfusion (I/R), a model of sterile inflammation. METHODS: Adult male mice underwent 70% hepatic ischemia for 60 minutes and 24-hour reperfusion. At the start of reperfusion, mice were treated intravenously with vehicle (phosphate-buffered saline) or PS-OMe miR130. Blood and liver tissue were collected after 24 hours for biochemical analysis. Apoptosis in the liver tissue was determined by transferase dUTP nick-end labeling assay. RESULTS: After hepatic I/R, organ injury markers including aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase significantly decreased after PS-OMe miR130 treatment. Furthermore, histological analysis of liver sections demonstrated significantly less injury in PS-OMe miR130 treatment mice versus vehicle mice. In addition, tumor necrosis factor α mRNA, interleukin-1ß mRNA, and neutrophil infiltration (myeloperoxidase activity and granulocyte receptor 1 immunohistochemistry) were significantly attenuated after PS-OMe miR130 treatment. Finally, apoptosis significantly decreased in liver tissue after treatment. CONCLUSION: PS-OMe miR130 decreases eCIRP-mediated injury and inflammation in a murine model of hepatic I/R.


Asunto(s)
Hepatopatías , MicroARNs , Daño por Reperfusión , Ratones , Masculino , Animales , MicroARNs/metabolismo , Daño por Reperfusión/metabolismo , Modelos Animales de Enfermedad , Hepatopatías/metabolismo , Hígado/patología , Isquemia/patología , Reperfusión , Apoptosis , Inflamación/metabolismo
20.
Mol Med ; 29(1): 21, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782115

RESUMEN

BACKGROUND: Sepsis is caused by the dysregulated immune response due to an initial infection and results in significant morbidity and mortality in humans. Extracellular cold inducible RNA binding protein (eCIRP) is a novel mediator identified in sepsis. We have previously discovered that microRNA 130b-3p inhibits eCIRP mediated inflammation. As RNA mimics are very unstable in vivo, we hypothesize that an engineered miRNA 130b-3p mimic named PS-OMe miR130, improves stability of the miRNA by protection from nuclease activity. We further hypothesize that PS-OMe miR130 reduces not only eCIRP-mediated inflammation and but also acute lung injury in a murine model of polymicrobial sepsis. METHODS: Single stranded PS-OMe miR130 was synthesized and the binding affinity to eCIRP was evaluated using surface plasmon resonance (SPR) and computational modeling. Macrophages were treated with PS-OMe miR130 with and without eCIRP and cell supernatant analyzed for cytokines. In vitro stability and the in vivo half-life of PS-OMe miR130 were also assessed. The effect of PS-Ome miR130 on eCIRP's binding to TLR4 was evaluated by SPR analysis and modeling. Finally, the effect of PS-OMe miR130 on inflammation and injury was assessed in a murine model of sepsis. RESULTS: We demonstrate via SPR and computational modeling that PS-OMe miR130 has a strong binding affinity to eCIRP. This engineered miRNA decreases eCIRP induced TNF-α and IL-6 proteins, and it is highly stable in vitro and has a long in vivo half-life. We further demonstrate that PS-OMe miR130 blocks eCIRP binding to its receptor TLR4. Finally, we show that PS-OMe miR130 inhibits inflammation and lung injury, and improves survival in murine sepsis. CONCLUSION: PS-OMe miR130 can be developed as a novel therapeutic by inhibiting eCIRP-mediated inflammation and acute lung injury in sepsis.


Asunto(s)
Lesión Pulmonar Aguda , MicroARNs , Sepsis , Humanos , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Modelos Animales de Enfermedad , Receptor Toll-Like 4/metabolismo , Lesión Pulmonar Aguda/etiología , Sepsis/genética , Sepsis/complicaciones , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...