RESUMEN
In the present study, we present a pyranopyrazole-TiO2 which is encapsulated with a niosome as nanocarrier for delivery of curcumin into breast cancer cells. Nanocarrier porous TiO2 is biocompatible and with a high specific surface area and a large pore volume and was used to carry pyranopyrazole, which has been reported as an anti-cancer. Niosome in the outer layer, helpful for loading curcumin into the niosomal layer, demonstrates a pH-dependent release and can be effective for cancer treatment. Entrapment efficiency of curcumin was found at 81.02% in carriers. The results of MTT and flow cytometry revealed that apoptosis is notably enhanced by loading curcumin on pyranopyrazole-TiO2@niosome. Also, there was high biocompatibility with MCF-10A, while exhibiting significant anti-cancer and anti-metastatic effects on MCF-7, whose cell viability was 38.79% in the loaded curcumin on carrier and was more than other samples even, than free curcumin (42.82%). Furthermore, the regulation of gene expression in cancer cells decreased the regulation of MMP-2 and MMP-9 genes and increased the expression of caspase-3 and caspase-9 genes. Finally, fluorescence activity in MCF-7 significantly increased after treatment with samples.
RESUMEN
An effective method for synthesizing acridinedione derivatives using a xanthan gum (XG), Thiacalix[4]arene (TC4A), and iron oxide nanoparticles (IONP) have been employed to construct a stable composition, which is named Thiacalix[4]arene-Xanthan Gum@ Iron Oxide Nanoparticles (TC4A-XG@IONP). The process used to fabricate this nanocatalyst includes the in-situ magnetization of XG, its amine modification by APTES to get NH2-XG@IONP hydrogel, the synthesis of TC4A, its functionalization with epichlorohydrine, and eventually its covalent attachment onto the NH2-XG@IONP hydrogel. The structure of the TC4A-XG@IONP was characterized by different analytical methods including Fourier-transform infrared spectroscopy, X-Ray diffraction analysis (XRD), Energy Dispersive X-Ray, Thermal Gravimetry analysis, Brunauer-Emmett-Teller, Field Emission Scanning Electron Microscope and Vibration Sample Magnetomete. With magnetic saturation of 9.10 emu g-1 and ~ 73% char yields, the TC4As-XG@IONP catalytic system demonstrated superparamagnetic property and high thermal stability. The magnetic properties of the TC4A-XG@IONP nanocatalyst system imparted by IONP enable it to be conveniently isolated from the reaction mixture by using an external magnet. In the XRD pattern of the TC4As-XG@IONP nanocatalyst, characteristic peaks were observed. This nanocatalyst is used as an eco-friendly, heterogeneous, and green magnetic catalyst in the synthesis of acridinedione derivatives through the one-pot pseudo-four component reaction of dimedone, various aromatic aldehydes, and ammonium acetate or aniline/substituted aniline. A combination of 10 mg of catalyst (TC4A-XG@IONP), 2 mmol of dimedone, and 1 mmol of aldehyde at 80 °C in a ethanol at 25 mL round bottom flask, the greatest output of acridinedione was 92% in 20 min.This can be attributed to using TC4A-XG@IONP catalyst with several merits as follows: high porosity (pore volume 0.038 cm3 g-1 and Pore size 9.309 nm), large surface area (17.306 m2 g-1), three dimensional structures, and many catalytic sites to active the reactants. Additionally, the presented catalyst could be reused at least four times (92-71%) with little activity loss, suggesting its excellent stability in this multicomponent reaction. Nanocatalysts based on natural biopolymers in combination with magnetic nanoparticles and macrocycles may open up new horizons for researchers in the field.
RESUMEN
PURPOSE: Biochemical markers such as cardiac troponin I (cTnI) and N-terminal pro B-type natriuretic peptide (NT-proBNP) have become indispensable tools for the diagnosis of myocardial injury, providing highly sensitive and specific information about cardiac cell damage and wall stress. The purpose of the present research was to examine the response of cardiac biomarkers to a soccer game in adolescent male soccer players. METHODS: Twenty-two trained adolescent male soccer players (14-16 y) were selected in a purposive manner. Blood samples were taken before, immediately after, and 2 and 24 hours after the game for the determination of cTnI and NT-proBNP. RESULTS: Serum concentration of cTnI and NT-proBNP increased immediately and 2 hours after the soccer game (P < .001). After 24 hours, the levels of cTnI dropped but remained above baseline (P = .002), whereas serum NT-proBNP levels returned to baseline. At no time point did any of the values exceed the upper reference value. CONCLUSIONS: This is the first study to investigate the acute responses of cardiac biomarkers to a soccer game in adolescent male players. The postgame elevation of cardiac biomarkers and their rapid recovery are indicative of a physiological rather than a pathological response.