Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1403769, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947319

RESUMEN

Introduction: Follicular helper T cells are essential for helping in the maturation of B cells and the production of neutralizing antibodies (NAbs) during primary viral infections. However, their role during recall responses is unclear. Here, we used hepatitis C virus (HCV) reinfection in humans as a model to study the recall collaborative interaction between circulating CD4 T follicular helper cells (cTfh) and memory B cells (MBCs) leading to the generation of NAbs. Methods: We evaluated this interaction longitudinally in subjects who have spontaneously resolved primary HCV infection during a subsequent reinfection episode that resulted in either another spontaneous resolution (SR/SR, n = 14) or chronic infection (SR/CI, n = 8). Results: Both groups exhibited virus-specific memory T cells that expanded upon reinfection. However, early expansion of activated cTfh (CD4+CXCR5+PD-1+ICOS+FoxP3-) occurred in SR/SR only. The frequency of activated cTfh negatively correlated with time post-infection. Concomitantly, NAbs and HCV-specific MBCs (CD19+CD27+IgM-E2-Tet+) peaked during the early acute phase in SR/SR but not in SR/CI. Finally, the frequency of the activated cTfh1 (CXCR3+CCR6-) subset correlated with the neutralization breadth and potency of NAbs. Conclusion: These results underscore a key role for early activation of cTfh1 cells in helping antigen-specific B cells to produce NAbs that mediate the clearance of HCV reinfection.


Asunto(s)
Hepacivirus , Hepatitis C , Células B de Memoria , Reinfección , Células T Auxiliares Foliculares , Humanos , Hepacivirus/inmunología , Células T Auxiliares Foliculares/inmunología , Masculino , Femenino , Hepatitis C/inmunología , Hepatitis C/virología , Células B de Memoria/inmunología , Adulto , Persona de Mediana Edad , Reinfección/inmunología , Reinfección/virología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Memoria Inmunológica , Anticuerpos contra la Hepatitis C/inmunología , Anticuerpos contra la Hepatitis C/sangre , Hepatitis C Crónica/inmunología , Hepatitis C Crónica/virología , Activación de Linfocitos/inmunología
2.
NPJ Parkinsons Dis ; 9(1): 157, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017009

RESUMEN

The USP19 deubiquitinase is found in a locus associated with Parkinson's Disease (PD), interacts with chaperonins, and promotes secretion of α-synuclein (α-syn) through the misfolding-associated protein secretion (MAPS) pathway. Since these processes might modulate the processing of α-syn aggregates in PD, we inactivated USP19 (KO) in mice expressing the A53T mutation of α-syn and in whom α-syn preformed fibrils (PFF) had been injected in the striatum. Compared to WT, KO brains showed decreased accumulation of phospho-synuclein (pSyn) positive aggregates. This improvement was associated with less activation of microglia and improved performance in a tail-suspension test. Exposure of primary neurons from WT and KO mice to PFF in vitro also led to decreased accumulation of pSyn aggregates. KO did not affect uptake of PFF nor propagation of aggregates in the cultured neurons. We conclude that USP19 instead modulates intracellular dynamics of aggregates. At an early time following PFF injection when the number of pSyn-positive neurons were similar in WT and KO brains, the KO neurons contained less aggregates. KO brain aggregates stained more intensely with anti-ubiquitin antibodies. Immunoprecipitation of soluble proteins from WT and KO brains with antibodies to pSyn showed higher levels of ubiquitinated oligomeric species in the KO samples. We propose that the improved pathology in USP19 KO brains may arise from decreased formation or enhanced clearance of the more ubiquitinated aggregates and/or enhanced disassembly towards more soluble oligomeric species. USP19 inhibition may represent a novel therapeutic approach that targets the intracellular dynamics of α-syn complexes.

3.
PLoS Pathog ; 18(11): e1010968, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36378682

RESUMEN

Successive episodes of hepatitis C virus (HCV) infection represent a unique natural rechallenge experiment to define correlates of long-term protective immunity and inform vaccine development. We applied a systems immunology approach to characterize longitudinal changes in the peripheral blood transcriptomic signatures in eight subjects who spontaneously resolved two successive HCV infections. Furthermore, we compared these signatures with those induced by an HCV T cell-based vaccine regimen. We identified a plasma cell transcriptomic signature during early acute HCV reinfection. This signature was absent in primary infection and following HCV vaccine boost. Spontaneous resolution of HCV reinfection was associated with rapid expansion of glycoprotein E2-specifc memory B cells in three subjects and transient increase in E2-specific neutralizing antibodies in six subjects. Concurrently, there was an increase in the breadth and magnitude of HCV-specific T cells in 7 out of 8 subjects. These results suggest a cooperative role for both antibodies and T cells in clearance of HCV reinfection and support the development of next generation HCV vaccines targeting these two arms of the immune system.


Asunto(s)
Hepatitis C , Transcriptoma , Vacunas contra Hepatitis Viral , Humanos , Anticuerpos Neutralizantes , Hepacivirus , Hepatitis C/inmunología , Hepatitis C/prevención & control , Anticuerpos contra la Hepatitis C , Reinfección , Proteínas del Envoltorio Viral
4.
Front Immunol ; 13: 994480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248843

RESUMEN

Macrophages are key regulators of inflammation and repair, but their heterogeneity and multiple roles in the liver are not fully understood. We aimed herein to map the intrahepatic macrophage populations and their function(s) during acute liver injury. We used flow cytometry, gene expression analysis, multiplex-immunofluorescence, 3D-reconstruction, and spatial image analysis to characterize the intrahepatic immune landscape in mice post-CCl4-induced acute liver injury during three distinct phases: necroinflammation, and early and late repair. We observed hepatocellular necrosis and a reduction in liver resident lymphocytes during necroinflammation accompanied by the infiltration of circulating myeloid cells and upregulation of inflammatory cytokines. These parameters returned to baseline levels during the repair phase while pro-repair chemokines were upregulated. We identified resident CLEC4F+ Kupffer cells (KCs) and infiltrating IBA1+CLEC4F- monocyte-derived macrophages (MoMFs) as the main hepatic macrophage populations during this response to injury. While occupying most of the necrotic area, KCs and MoMFs exhibited distinctive kinetics, distribution and morphology at the site of injury. The necroinflammation phase was characterized by low levels of KCs and a remarkable invasion of MoMFs suggesting their potential role in phagoctosing necrotic hepatocytes, while opposite kinetics/distribution were observed during repair. During the early repair phase, yolksac - derived KCs were restored, whereas MoMFs diminished gradually then dissipated during late repair. MoMFs interacted with hepatic stellate cells during the necroinflammatory and early repair phases, potentially modulating their activation state and influencing their fibrogenic and pro-repair functions that are critical for wound healing. Altogether, our study reveals novel and distinct spatial and temporal distribution of KCs and MoMFs and provides insights into their complementary roles during acute liver injury.


Asunto(s)
Macrófagos del Hígado , Hígado , Animales , Quimiocinas/metabolismo , Citocinas/metabolismo , Hígado/lesiones , Hígado/metabolismo , Macrófagos , Ratones
5.
Cell Mol Gastroenterol Hepatol ; 14(6): 1269-1294, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35970323

RESUMEN

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is a major health problem with complex pathogenesis. Although sex differences in NAFLD pathogenesis have been reported, the mechanisms underlying such differences remain understudied. Interleukin (IL)22 is a pleiotropic cytokine with both protective and/or pathogenic effects during liver injury. IL22 was shown to be hepatoprotective in NAFLD-related liver injury. However, these studies relied primarily on exogenous administration of IL22 and did not examine the sex-dependent effect of IL22. Here, we sought to characterize the role of endogenous IL22-receptor signaling during NAFLD-induced liver injury in males and females. METHODS: We used immunofluorescence, flow cytometry, histopathologic assessment, and gene expression analysis to examine IL22 production and characterize the intrahepatic immune landscape in human subjects with NAFLD (n = 20; 11 men and 9 women) and in an in vivo Western high-fat diet-induced NAFLD model in IL22RA knock out mice and their wild-type littermates. RESULTS: Examination of publicly available data sets from 2 cohorts with NAFLD showed increased hepatic IL22 gene expression in females compared with males. Furthermore, our immunofluorescence analysis of liver sections from NAFLD subjects (n = 20) showed increased infiltration of IL22-producing cells in females. Similarly, IL22-producing cells were increased in wild-type female mice with NAFLD and the hepatic IL22/IL22 binding protein messenger RNA ratio correlated with expression of anti-apoptosis genes. The lack of endogenous IL22-receptor signaling (IL22RA knockout) led to exacerbated liver damage, inflammation, apoptosis, and liver fibrosis in female, but not male, mice with NAFLD. CONCLUSIONS: Our data suggest a sex-dependent hepatoprotective antiapoptotic effect of IL22-receptor signaling during NAFLD-related liver injury in females.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Femenino , Humanos , Masculino , Ratones , Animales , Receptores de Interleucina/genética , Transducción de Señal , Cirrosis Hepática , Ratones Noqueados
6.
J Clin Invest ; 131(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33463551

RESUMEN

Early appearance of neutralizing antibodies during acute hepatitis C virus (HCV) infection is associated with spontaneous viral clearance. However, the longitudinal changes in antigen-specific memory B cell (MBCs) associated with divergent HCV infection outcomes remain undefined. We characterized longitudinal changes in E2 glycoprotein-specific MBCs from subjects who either spontaneously resolved acute HCV infection or progressed to chronic infection, using single-cell RNA-seq and functional assays. HCV-specific antibodies in plasma from chronically infected subjects recognized multiple E2 genotypes, while those from spontaneous resolvers exhibited variable cross-reactivity to heterotypic E2. E2-specific MBCs from spontaneous resolvers peaked early after infection (4-6 months), following expansion of activated circulating T follicular helper cells (cTfh) expressing interleukin 21. In contrast, E2-specific MBCs from chronically infected subjects, enriched in VH1-69, expanded during persistent infection (> 1 year), in the absence of significantly activated cTfh expansion. Early E2-specific MBCs from spontaneous resolvers produced monoclonal antibodies (mAbs) with fewer somatic hypermutations and lower E2 binding but similar neutralization as mAbs from late E2-specific MBCs of chronically infected subjects. These findings indicate that early cTfh activity accelerates expansion of E2-specific MBCs during acute infection, which might contribute to spontaneous clearance of HCV.


Asunto(s)
Linfocitos B/inmunología , Proliferación Celular , Hepatitis C Crónica/inmunología , RNA-Seq , Análisis de la Célula Individual , Linfocitos T Colaboradores-Inductores/inmunología , Enfermedad Aguda , Linfocitos B/patología , Línea Celular Tumoral , Femenino , Hepatitis C Crónica/patología , Humanos , Masculino , Linfocitos T Colaboradores-Inductores/patología
7.
Diabetologia ; 62(1): 136-146, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30386869

RESUMEN

AIMS/HYPOTHESIS: Elucidating the molecular mechanisms of fat accumulation and its metabolic consequences is crucial to understanding and treating obesity, an epidemic disease. We have previously observed that Usp19 deubiquitinating enzyme-null mice (Usp19-/-) have significantly lower fat mass than wild-type (WT) mice. Thus, this study aimed to provide further understanding of the role of ubiquitin-specific peptidase 19 (USP19) in fat development, obesity and diabetes. METHODS: In this study, the metabolic phenotypes of WT and Usp19-/- mice were compared. The stromal vascular fractions (SVFs) of inguinal fat pads from WT and Usp19-/- mice were isolated and cells were differentiated into adipocytes in culture to assess their adipogenic capacity. Mice were fed a high-fat diet (HFD) for 18 weeks. Body composition, glucose metabolism and metabolic variables were assessed. In addition, following insulin injection, signalling activity was analysed in the muscle, liver and adipose tissue. Finally, the correlation between the expression of Usp19 mRNA and adipocyte function genes in human adipose tissue was analysed. RESULT: Upon adipogenic differentiation, SVF cells from Usp19-/- failed to accumulate lipid and upregulate adipogenic genes, unlike cells from WT mice. Usp19-/- mice were also found to have smaller fat pads throughout the lifespan and a higher percentage of lean mass, compared with WT mice. When fed an HFD, Usp19-/- mice were more glucose tolerant, pyruvate tolerant and insulin sensitive than WT mice. Moreover, HFD-fed Usp19-/- mice had enhanced insulin signalling in the muscle and the liver, but not in adipose tissue. Finally, USP19 mRNA expression in human adipose tissue was positively correlated with the expression of important adipocyte genes in abdominal fat depots, but not subcutaneous fat depots. CONCLUSIONS/INTERPRETATION: USP19 is an important regulator of fat development. Its inactivation in mice exerts effects on multiple tissues, which may protect against the negative metabolic effects of high-fat feeding. These findings suggest that inhibition of USP19 could have therapeutic potential to protect from the deleterious consequences of obesity and diabetes.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Endopeptidasas/metabolismo , Intolerancia a la Glucosa/metabolismo , Obesidad/metabolismo , Adipogénesis/genética , Adipogénesis/fisiología , Animales , Western Blotting , Estudios Transversales , Endopeptidasas/genética , Intolerancia a la Glucosa/etiología , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Ratones , Ratones Noqueados , Obesidad/etiología , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
PLoS Pathog ; 14(9): e1007290, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30222771

RESUMEN

Most individuals exposed to hepatitis C virus (HCV) become persistently infected while a minority spontaneously eliminate the virus. Although early immune events influence infection outcome, the cellular composition, molecular effectors, and timeframe of the host response active shortly after viral exposure remain incompletely understood. Employing specimens collected from people who inject drugs (PWID) with high risk of HCV exposure, we utilized RNA-Seq and blood transcriptome module (BTM) analysis to characterize immune function in peripheral blood mononuclear cells (PBMC) before, during, and after acute HCV infection resulting in spontaneous resolution. Our results provide a detailed description of innate immune programs active in peripheral blood during acute HCV infection, which include prominent type I interferon and inflammatory signatures. Innate immune gene expression rapidly returns to pre-infection levels upon viral clearance. Comparative analyses using peripheral blood gene expression profiles from other viral and vaccine studies demonstrate similarities in the immune responses to acute HCV and flaviviruses. Of note, both acute dengue virus (DENV) infection and acute HCV infection elicit similar innate antiviral signatures. However, while transient in DENV infection, this signature was sustained for many weeks in the response to HCV. These results represent the first longitudinal transcriptomic characterization of human immune function in PBMC during acute HCV infection and identify several dynamically regulated features of the complex response to natural HCV exposure.


Asunto(s)
Hepatitis C/genética , Hepatitis C/inmunología , Enfermedad Aguda , Adulto , Linfocitos B/inmunología , Dengue/inmunología , Femenino , Hepacivirus/inmunología , Hepacivirus/aislamiento & purificación , Hepacivirus/patogenicidad , Hepatitis C/virología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/genética , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Remisión Espontánea , Análisis de Secuencia de ARN , Transcriptoma , Carga Viral/inmunología , Vacuna contra la Fiebre Amarilla/inmunología , Adulto Joven
9.
Endocrinology ; 159(8): 2966-2977, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29901692

RESUMEN

Muscle atrophy arises because of many chronic illnesses, as well as from prolonged glucocorticoid treatment and nutrient deprivation. We previously demonstrated that the USP19 deubiquitinating enzyme plays an important role in chronic glucocorticoid- and denervation-induced muscle wasting. However, the mechanisms by which USP19 exerts its effects remain unknown. To explore this further, we fasted mice for 48 hours to try to identify early differences in the response of wild-type and USP19 knockout (KO) mice that could yield insights into the mechanisms of USP19 action. USP19 KO mice manifested less myofiber atrophy in response to fasting due to increased rates of protein synthesis. Insulin signaling was enhanced in the KO mice, as revealed by lower circulating insulin levels, increased insulin-stimulated glucose disposal and phosphorylation of Akt and S6K in muscle, and improved overall glucose tolerance. Glucocorticoid signaling, which is essential in many conditions of atrophy, was decreased in KO muscle, as revealed by decreased expression of glucocorticoid receptor (GR) target genes upon both fasting and glucocorticoid treatment. This decreased GR signaling was associated with lower GR protein levels in the USP19 KO muscle. Restoring the GR levels in USP19-deficient muscle was sufficient to abolish the protection from myofiber atrophy. Expression of GR target genes also correlated with that of USP19 in human muscle samples. Thus, USP19 modulates GR levels and in so doing may modulate both insulin and glucocorticoid signaling, two critical pathways that control protein turnover in muscle and overall glucose homeostasis.


Asunto(s)
Endopeptidasas/genética , Glucocorticoides/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Receptores de Glucocorticoides/genética , Anciano , Animales , Glucemia/metabolismo , Endopeptidasas/metabolismo , Ayuno/metabolismo , Femenino , Expresión Génica , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Mioblastos , Biosíntesis de Proteínas , Ácido Pirúvico/metabolismo , Receptores de Glucocorticoides/metabolismo , Transducción de Señal
10.
EMBO Mol Med ; 10(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29844217

RESUMEN

Activation of AMPK has been associated with pro-atrophic signaling in muscle. However, AMPK also has anti-inflammatory effects, suggesting that in cachexia, a syndrome of inflammatory-driven muscle wasting, AMPK activation could be beneficial. Here we show that the AMPK agonist AICAR suppresses IFNγ/TNFα-induced atrophy, while the mitochondrial inhibitor metformin does not. IFNγ/TNFα impair mitochondrial oxidative respiration in myotubes and promote a metabolic shift to aerobic glycolysis, similarly to metformin. In contrast, AICAR partially restored metabolic function. The effects of AICAR were prevented by the AMPK inhibitor Compound C and were reproduced with A-769662, a specific AMPK activator. AICAR and A-769662 co-treatment was found to be synergistic, suggesting that the anti-cachectic effects of these drugs are mediated through AMPK activation. AICAR spared muscle mass in mouse models of cancer and LPS induced atrophy. Together, our findings suggest a dual function for AMPK during inflammation-driven atrophy, wherein it can play a protective role when activated exogenously early in disease progression, but may contribute to anabolic suppression and atrophy when activated later through mitochondrial dysfunction and subsequent metabolic stress.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Caquexia/prevención & control , Metformina/uso terapéutico , Proteínas Quinasas/metabolismo , Ribonucleótidos/uso terapéutico , Quinasas de la Proteína-Quinasa Activada por el AMP , Aminoimidazol Carboxamida/uso terapéutico , Animales , Caquexia/etiología , Línea Celular , Activación Enzimática , Inflamación/complicaciones , Interferón gamma/antagonistas & inhibidores , Masculino , Ratones Endogámicos BALB C , Mitocondrias/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Neoplasias Experimentales/patología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteínas Quinasas/efectos de los fármacos , Choque Séptico/inducido químicamente , Choque Séptico/complicaciones , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
11.
Immun Inflamm Dis ; 4(3): 376-88, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27621819

RESUMEN

INTRODUCTION: Polymorphisms in the type III interferon IFN-λ3 and the killer cell immunoglobulin-like receptor (KIR) genes controlling the activity of natural killer (NK) cells can predict spontaneous resolution of acute hepatitis C virus (HCV) infection. We hypothesized that IFN-λ3 polymorphism may modulate NK cell function during acute HCV. METHODS: We monitored the plasma levels of type III IFNs in relation to the phenotype and the function of NK cells in a cohort of people who inject drugs (PWID) during acute HCV infection with different outcomes. RESULTS: Early acute HCV was associated with high variability in type III IFNs plasma levels and the favorable IFN-λ3 CC genotype was associated with higher viral loads. Reduced expression of Natural Killer Group Protein 2A (NKG2A) was associated with lower IFN-λ3 plasma levels and the CC genotype. IFN-γ production by NK cells was higher in individuals with the CC genotype during acute infection but this did not prevent viral persistence. IFN-λ3 plasma levels did not correlate with function of NK cells and IFN-λ3 prestimulation did not affect NK cell activation and function. CONCLUSIONS: These results suggest that IFN-λ3 polymorphism indirectly influences NK cell phenotype and function during acute HCV but other factors may act in concert to determine the outcome of the infection.

12.
Proc Natl Acad Sci U S A ; 113(37): E5444-53, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27573835

RESUMEN

Exhaustion of CD8(+) T cells severely impedes the adaptive immune response to chronic viral infections. Despite major advances in our understanding of the molecular regulation of exhaustion, the cytokines that directly control this process during chronicity remain unknown. We demonstrate a direct impact of IL-2 and IL-15, two common gamma-chain-dependent cytokines, on CD8(+) T-cell exhaustion. Common to both cytokine receptors, the IL-2 receptor ß (IL2Rß) chain is selectively maintained on CD8(+) T cells during chronic lymphocytic choriomeningitis virus and hepatitis C virus infections. Its expression correlates with exhaustion severity and identifies terminally exhausted CD8(+) T cells both in mice and humans. Genetic ablation of the IL2Rß chain on CD8(+) T cells restrains inhibitory receptor induction, in particular 2B4 and Tim-3; precludes terminal differentiation of highly defective PD-1(hi) effectors; and rescues memory T-cell development and responsiveness to IL-7-dependent signals. Together, we ascribe a previously unexpected role to IL-2 and IL-15 as instigators of CD8(+) T-cell exhaustion during chronic viral infection.


Asunto(s)
Interleucina-15/genética , Subunidad beta del Receptor de Interleucina-2/genética , Interleucina-2/genética , Coriomeningitis Linfocítica/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Hepacivirus/inmunología , Hepacivirus/patogenicidad , Receptor 2 Celular del Virus de la Hepatitis A/genética , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Humanos , Memoria Inmunológica , Interleucina-15/metabolismo , Interleucina-2/metabolismo , Subunidad beta del Receptor de Interleucina-2/inmunología , Interleucina-7/genética , Interleucina-7/inmunología , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/patología , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/patogenicidad , Ratones , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo
13.
FASEB J ; 29(9): 3889-98, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26048142

RESUMEN

The ubiquitin system plays a critical role in muscle wasting. Previous work has focused on the roles of ubiquitination. However, a role for deubiquitination in this process has not been established. Because ubiquitin-specific protease (USP)19 deubiquitinating enzyme is induced in skeletal muscle in many catabolic conditions, we generated USP19 knockout (KO) mice. These mice lost less muscle mass than wild-type (WT) animals in response to glucocorticoids, a common systemic cause of muscle atrophy as well as in response to denervation, a model of disuse atrophy. KO mice retained more strength and had less myofiber atrophy with both type I and type IIb fibers being protected. Rates of muscle protein synthesis were similar in WT and KO mice, suggesting that the sparing of atrophy was attributed to suppressed protein degradation. Consistent with this, expression of the ubiquitin ligases MuRF1 and MAFbx/atrogin-1 as well as several autophagy genes was decreased in the muscles of catabolic KO mice. Expression of USP19 correlates with that of MuRF1 and MAFbx/atrogin-1 in skeletal muscles from patients with lung cancer or gastrointestinal cancer, suggesting that USP19 is involved in human muscle wasting. Inhibition of USP19 may be a useful approach to the treatment of many muscle-wasting conditions.


Asunto(s)
Endopeptidasas/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Proteínas Ligasas SKP Cullina F-box/biosíntesis , Ubiquitina-Proteína Ligasas/biosíntesis , Anciano , Animales , Endopeptidasas/genética , Femenino , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Proteínas Musculares/biosíntesis , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/genética
14.
Gastroenterology ; 147(4): 870-881.e8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25038432

RESUMEN

BACKGROUND & AIMS: Development of a vaccine against hepatitis C virus (HCV) has been hindered by our limited understanding of immune correlates of protection during real-life exposure to the virus. We studied the immune response during HCV reinfection. METHODS: We analyzed blood samples from participants in the Montreal Acute Hepatitis C Injection Drug User Cohort Study who were reinfected with HCV from 2009 to 2012. Five patients spontaneously resolved their second infection and 4 developed chronic infections. We monitored the phenotypic and functional dynamics of HCV-specific memory T cell responses in all subjects during natural re-exposure and re-infection. RESULTS: Populations of CD4(+) and CD8(+) T cells with HCV-specific polyfunctional memory were expanded in all 5 individuals who resolved 2 successive HCV infections. We detected CD127(hi) HCV-specific memory CD8(+) T cells before reinfection regardless of a subject's ability to clear subsequent infections. Protection against viral persistence was associated with the expansion of a CD127(neg), PD1(lo) effector memory T cells at the peak of the response. We also observed broadening of T-cell response, indicating generation of de novo T-cell responses. The 4 individuals who failed to clear their subsequent infection had limited expansion of HCV-specific CD4(+) and CD8(+) memory T cells and expressed variable levels of the exhaustion marker PD1 on HCV-specific CD8(+) T cells. Dominant epitope regions of HCV strains isolated from patients with persistent reinfection had sequence variations that were not recognized by the pre-existing memory T cells. CONCLUSIONS: Protection from persistent HCV reinfection depends on the magnitude, breadth, and quality of the HCV-specific memory T-cell response. Sequence homology among viruses and ability of T cells to recognize multiple strains of HCV are critical determinants of protective memory.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Hepacivirus/inmunología , Hepatitis C/inmunología , Memoria Inmunológica , Antígenos Virales/sangre , Biomarcadores/sangre , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Proliferación Celular , Epítopos de Linfocito T/sangre , Hepacivirus/genética , Hepatitis C/sangre , Hepatitis C/diagnóstico , Hepatitis C/prevención & control , Humanos , Inmunofenotipificación , Subunidad alfa del Receptor de Interleucina-7/sangre , Activación de Linfocitos , Fenotipo , Receptor de Muerte Celular Programada 1/sangre , Quebec , ARN Viral/sangre , Prevención Secundaria , Factores de Tiempo
15.
PLoS Pathog ; 9(6): e1003422, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23818845

RESUMEN

Loss of CD4 T cell help correlates with virus persistence during acute hepatitis C virus (HCV) infection, but the underlying mechanism(s) remain unknown. We developed a combined proliferation/intracellular cytokine staining assay to monitor expansion of HCV-specific CD4 T cells and helper cytokines expression patterns during acute infections with different outcomes. We demonstrate that acute resolving HCV is characterized by strong Th1/Th17 responses with specific expansion of IL-21-producing CD4 T cells and increased IL-21 levels in plasma. In contrast, viral persistence was associated with lower frequencies of IL-21-producing CD4 T cells, reduced proliferation and increased expression of the inhibitory receptors T cell immunoglobulin and mucin-domain-containing-molecule-3 (Tim-3), programmed death 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) on HCV-specific CD8 T cells. Progression to persistent infection was accompanied by increased plasma levels of the Tim-3 ligand Galectin-9 (Gal-9) and expansion of Gal-9 expressing regulatory T cells (Tregs). In vitro supplementation of Tim-3(high) HCV-specific CD8 T cells with IL-21 enhanced their proliferation and prevented Gal-9 induced apoptosis. siRNA-mediated knockdown of Gal-9 in Treg cells rescued IL-21 production by HCV-specific CD4 T cells. We propose that failure of CD4 T cell help during acute HCV is partially due to an imbalance between Th17 and Treg cells whereby exhaustion of both CD4 and CD8 T cells through the Tim-3/Gal-9 pathway may be limited by IL-21 producing Th17 cells or enhanced by Gal-9 producing Tregs.


Asunto(s)
Proliferación Celular , Galectinas/inmunología , Hepatitis C/inmunología , Interleucinas/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Enfermedad Aguda , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Células Cultivadas , Femenino , Estudios de Seguimiento , Galectinas/biosíntesis , Regulación de la Expresión Génica/inmunología , Receptor 2 Celular del Virus de la Hepatitis A , Hepatitis C/sangre , Hepatitis C/patología , Humanos , Interleucinas/sangre , Masculino , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Células Th17/metabolismo , Células Th17/patología
16.
J Virol ; 87(12): 6769-81, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23576504

RESUMEN

Some studies have reported that dendritic cells (DCs) may be dysfunctional in a subset of patients with chronic hepatitis C virus (HCV) infection. However, the function of DCs during acute HCV infection and their role in determining infectious outcome remain elusive. Here, we examined the phenotype and function of myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) during acute HCV infection. Three groups of injection drug users (IDUs) at high risk of HCV infection were studied: an uninfected group, a group with acute HCV infection with spontaneous resolution, and a group with acute infection with chronic evolution. We examined the frequency, maturation status, and cytokine production capacity of DCs in response to the Toll-like receptor 4 (TLR4) and TLR7/8 ligands lipopolysaccharide (LPS) and single-stranded RNA (ssRNA), respectively. Several observations could distinguish HCV-negative IDUs and acute HCV resolvers from patients with acute infection with chronic evolution. First, we observed a decrease in the frequency of mature CD86(+), programmed death-1 receptor ligand-positive (PDL1(+)), and PDL2(+) pDCs. This phenotype was associated with the increased sensitivity of pDCs from resolvers and HCV-negative IDUs versus the group with acute infection with chronic evolution to ssRNA stimulation in vitro. Second, LPS-stimulated mDCs from resolvers and HCV-negative IDUs produced higher levels of cytokines than mDCs from the group with acute infection with chronic evolution. Third, mDCs from all patients with acute HCV infection, irrespective of their outcomes, produced higher levels of cytokines during the early acute phase in response to ssRNA than mDCs from healthy controls. However, this hyperresponsiveness was sustained only in spontaneous resolvers. Altogether, our results suggest that the immature pDC phenotype and sustained pDC and mDC hyperresponsiveness are associated with spontaneous resolution of acute HCV infection.


Asunto(s)
Células Dendríticas/citología , Células Dendríticas/inmunología , Hepacivirus/inmunología , Hepatitis C/inmunología , Enfermedad Aguda , Diferenciación Celular , Citocinas/biosíntesis , Femenino , Hepacivirus/patogenicidad , Hepatitis C/virología , Hepatitis C Crónica/inmunología , Humanos , Interferones , Interleucinas/genética , Lipopolisacáridos/inmunología , Masculino , Abuso de Sustancias por Vía Intravenosa/complicaciones , Linfocitos T/inmunología , Receptor Toll-Like 4/inmunología
17.
Biol Open ; 1(8): 789-801, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23213472

RESUMEN

Endogenous 24-hour rhythms are generated by circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Post-translational modifications, including ubiquitination, are important for regulating the clock feedback mechanism. Previous work has focused on the role of ubiquitin ligases in the clock mechanism. Here we show a role for the rhythmically-expressed deubiquitinating enzyme ubiquitin specific peptidase 2 (USP2) in clock function. Mice with a deletion of the Usp2 gene (Usp2 KO) display a longer free-running period of locomotor activity rhythms and altered responses of the clock to light. This was associated with altered expression of clock genes in synchronized Usp2 KO mouse embryonic fibroblasts and increased levels of clock protein PERIOD1 (PER1). USP2 can be coimmunoprecipitated with several clock proteins but directly interacts specifically with PER1 and deubiquitinates it. Interestingly, this deubiquitination does not alter PER1 stability. Taken together, our results identify USP2 as a new core component of the clock machinery and demonstrate a role for deubiquitination in the regulation of the circadian clock, both at the level of the core pacemaker and its response to external cues.

18.
J Biol Chem ; 287(1): 531-541, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22081612

RESUMEN

We reported previously that parkin, a Parkinson disease-associated E3 ubiquitin-ligase interacts with ataxin-3, a deubiquitinating enzyme associated with Machado-Joseph disease. Ataxin-3 was found to counteract parkin self-ubiquitination both in vitro and in cells. Moreover, ataxin-3-dependent deubiquitination of parkin required the catalytic cysteine 14 in ataxin-3, although the precise mechanism remained unclear. We report here that ataxin-3 interferes with the attachment of ubiquitin (Ub) onto parkin in real-time during conjugation but is unable to hydrolyze previously assembled parkin-Ub conjugates. The mechanism involves an ataxin-3-dependent stabilization of the complex between parkin and the E2 Ub-conjugating enzyme, which impedes the efficient charging of the E2 with Ub. Moreover, within this complex, the transfer of Ub from the E2 is diverted away from parkin and onto ataxin-3, further explaining how ataxin-3 deubiquitination is coupled to parkin ubiquitination. Taken together, our findings reveal an unexpected convergence upon the E2 Ub-conjugating enzyme in the regulation of an E3/deubiquitinating enzyme pair, with important implications for the function of parkin and ataxin-3, two proteins responsible for closely related neurodegenerative diseases.


Asunto(s)
Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Animales , Ataxina-3 , Dominio Catalítico , Células HEK293 , Humanos , Ratones , Proteínas Nucleares/química , Estabilidad Proteica , Factores de Transcripción/química
19.
Biol Reprod ; 85(3): 594-604, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21543767

RESUMEN

The ubiquitin-proteasome system plays an important role in spermatogenesis. However, the functions of deubiquitinating enzymes in this process remain poorly characterized. We previously showed that the deubiquitinating enzyme USP2 is induced in late elongating spermatids. To identify its function, we generated mice lacking USP2. Usp2 -/- mice appeared normal, and the weights of major organs, including the testis, did not differ from wild type (Usp2 +/+). However, although the numbers of testicular spermatids and epididymal spermatozoa were normal in Usp2 -/- males, these animals had a severe defect in fertility, yielding only 12% as many offspring as Usp2 +/+ littermates. Spermatogenesis in Usp2 -/- mice was morphologically normal except for the presence of abnormal aggregations of elongating spermatids and formation of multinucleated cells in some tubules. The epididymal epithelium was morphologically normal in Usp2 -/- mice, but some abnormal cells other than sperm were present in the lumen. Usp2 -/- epididymal spermatozoa manifested normal motility when incubated in culture media, but rapidly became immotile when incubated in PBS in contrast to Usp2 +/+ spermatozoa, which largely maintained motility under this condition. Usp2 -/- and +/+ spermatozoa underwent acrosome reactions in vitro with similar frequency. In vitro fertilization assays demonstrated a severe defect in the ability of Usp2 -/- spermatozoa to fertilize eggs. This could be bypassed by intracytoplasmic sperm injection or removal of the zona pellucida, which resulted in fertilization rates similar to that of Usp2 +/+ mice. We demonstrate for the first time, using mouse transgenic approaches, a role for the ubiquitin system in fertilization.


Asunto(s)
Endopeptidasas/metabolismo , Fertilización , Infertilidad Masculina/enzimología , Motilidad Espermática , Reacción Acrosómica , Animales , Endopeptidasas/genética , Epidídimo/patología , Infertilidad Masculina/etiología , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Espermatozoides/patología , Espermatozoides/fisiología , Testículo/patología , Ubiquitina Tiolesterasa , Proteasas Ubiquitina-Específicas
20.
PLoS One ; 6(1): e15936, 2011 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-21264218

RESUMEN

We previously reported that the USP19 deubiquitinating enzyme positively regulates proliferation in fibroblasts by stabilizing KPC1, a ubiquitin ligase for p27(Kip1). To explore whether this role of USP19 extends to other cellular systems, we tested the effects of silencing of USP19 in several human prostate and breast models, including carcinoma cell lines. Depletion of USP19 inhibited proliferation in prostate cancer DU145, PC-3 and 22RV1 cells, which was similar to the pattern established in fibroblasts in that it was due to decreased progression from G1 to S phase and associated with a stabilization of the cyclin-dependent kinase inhibitor p27(Kip1). However, in contrast to previous findings in fibroblasts, the stabilization of p27(Kip1) upon USP19 depletion was not associated with changes in the levels of the KPC1 ligase. USP19 could also regulate the growth of immortalized MCF10A breast epithelial cells through a similar mechanism. This regulatory pattern was lost, though, in breast cancer MCF7 and MDA-MB-231 cells and in prostate carcinoma LNCaP cells. Of interest, the transformation of fibroblasts through overexpression of an oncogenic form of Ras disrupted the USP19-mediated regulation of cell growth and of levels of p27(Kip1) and KPC1. Thus, the cell context appears determinant for the ability of USP19 to regulate cell proliferation and p27(Kip1) levels. This may occur through both KPC1 dependent and independent mechanisms. Moreover, a complete loss of USP19 function on cell growth may arise as a result of oncogenic transformation of cells.


Asunto(s)
Neoplasias de la Mama/patología , Proliferación Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/análisis , Endopeptidasas/fisiología , Neoplasias de la Próstata/patología , Ciclo Celular , Línea Celular Tumoral , Transformación Celular Neoplásica , Células Cultivadas , Femenino , Fibroblastos/citología , Humanos , Masculino , Estabilidad Proteica , Ubiquitina-Proteína Ligasas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...