Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 14(2): 320-31, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26748711

RESUMEN

Cyclin-dependent kinases regulate the cell cycle and transcription in higher eukaryotes. We have determined the crystal structure of the transcription kinase Cdk13 and its Cyclin K subunit at 2.0 Å resolution. Cdk13 contains a C-terminal extension helix composed of a polybasic cluster and a DCHEL motif that interacts with the bound ATP. Cdk13/CycK phosphorylates both Ser5 and Ser2 of the RNA polymerase II C-terminal domain (CTD) with a preference for Ser7 pre-phosphorylations at a C-terminal position. The peptidyl-prolyl isomerase Pin1 does not change the phosphorylation specificities of Cdk9, Cdk12, and Cdk13 but interacts with the phosphorylated CTD through its WW domain. Using recombinant proteins, we find that flavopiridol inhibits Cdk7 more potently than it does Cdk13. Gene expression changes after knockdown of Cdk13 or Cdk12 are markedly different, with enrichment of growth signaling pathways for Cdk13-dependent genes. Together, our results provide insights into the structure, function, and activity of human Cdk13/CycK.


Asunto(s)
Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Fosforilación , Transducción de Señal
2.
Nucleic Acids Res ; 43(5): 2575-89, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25712099

RESUMEN

The Cdk12/CycK complex promotes expression of a subset of RNA polymerase II genes, including those of the DNA damage response. CDK12 is among only nine genes with recurrent somatic mutations in high-grade serous ovarian carcinoma. However, the influence of these mutations on the Cdk12/CycK complex and their link to cancerogenesis remain ill-defined. Here, we show that most mutations prevent formation of the Cdk12/CycK complex, rendering the kinase inactive. By examining the mutations within the Cdk12/CycK structure, we find that they likely provoke structural rearrangements detrimental to Cdk12 activation. Our mRNA expression analysis of the patient samples containing the CDK12 mutations reveals coordinated downregulation of genes critical to the homologous recombination DNA repair pathway. Moreover, we establish that the Cdk12/CycK complex occupies these genes and promotes phosphorylation of RNA polymerase II at Ser2. Accordingly, we demonstrate that the mutant Cdk12 proteins fail to stimulate the faithful DNA double strand break repair via homologous recombination. Together, we provide the molecular basis of how mutated CDK12 ceases to function in ovarian carcinoma. We propose that CDK12 is a tumor suppressor of which the loss-of-function mutations may elicit defects in multiple DNA repair pathways, leading to genomic instability underlying the genesis of the cancer.


Asunto(s)
Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , Reparación del ADN/genética , Mutación , Secuencia de Aminoácidos , Western Blotting , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/química , Ciclinas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Unión Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
3.
Nucleic Acids Res ; 42(12): 7577-90, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24860166

RESUMEN

The bromodomain protein Brd4 regulates the transcription of signal-inducible genes. This is achieved by recruiting the positive transcription elongation factor P-TEFb to promoters by its P-TEFb interaction domain (PID). Here we show that Brd4 stimulates the kinase activity of P-TEFb for phosphorylation of the C-terminal domain (CTD) of RNA polymerase II over basal levels. The CTD phosphorylation saturation levels, the preferences for pre-phosphorylated substrates, and the phosphorylation specificity for Ser5 of the CTD however remain unchanged. Inhibition of P-TEFb by Hexim1 is relieved by Brd4, although no mutual displacement with the Cyclin T-binding domain of Hexim1 was observed. Brd4 PID shows a surprising sequence motif similarity to the trans-activating Tat protein from HIV-1, which includes a core RxL motif, a polybasic cluster known as arginine-rich motif, and a C-terminal leucine motif. Mutation of these motifs to alanine significantly diminished the stimulatory effect of Brd4 and fully abrogated its activation potential in presence of Hexim1. Yet the protein was not found to bind Cyclin T1 as Tat, but only P-TEFb with a dissociation constant of 0.5 µM. Our data suggest a model where Brd4 acts on the kinase subunit of P-TEFb to relieve inhibition and stimulate substrate recognition.


Asunto(s)
Proteínas Nucleares/química , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción/química , Secuencias de Aminoácidos , Proteínas de Ciclo Celular , Secuencia Conservada , Productos del Gen tat/química , Proteínas Nucleares/metabolismo , Fosforilación , Dominios y Motivos de Interacción de Proteínas , ARN Polimerasa II/química , Factores de Transcripción/metabolismo
4.
Nat Commun ; 5: 3505, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24662513

RESUMEN

Phosphorylation of the RNA polymerase II C-terminal domain (CTD) by cyclin-dependent kinases is important for productive transcription. Here we determine the crystal structure of Cdk12/CycK and analyse its requirements for substrate recognition. Active Cdk12/CycK is arranged in an open conformation similar to that of Cdk9/CycT but different from those of cell cycle kinases. Cdk12 contains a C-terminal extension that folds onto the N- and C-terminal lobes thereby contacting the ATP ribose. The interaction is mediated by an HE motif followed by a polybasic cluster that is conserved in transcriptional CDKs. Cdk12/CycK showed the highest activity on a CTD substrate prephosphorylated at position Ser7, whereas the common Lys7 substitution was not recognized. Flavopiridol is most potent towards Cdk12 but was still 10-fold more potent towards Cdk9. T-loop phosphorylation of Cdk12 required coexpression with a Cdk-activating kinase. These results suggest the regulation of Pol II elongation by a relay of transcriptionally active CTD kinases.


Asunto(s)
Quinasas Ciclina-Dependientes/química , Ciclinas/química , Modelos Moleculares , Complejos Multiproteicos/química , Western Blotting , Cristalización , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Células HeLa , Humanos , Inmunoprecipitación , Espectrometría de Masas , Complejos Multiproteicos/metabolismo , Conformación Proteica , Especificidad por Sustrato
5.
Nat Commun ; 3: 842, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22588304

RESUMEN

Phosphorylation of RNA polymerase II carboxy-terminal domain (CTD) in hepta-repeats YSPTSPS regulates eukaryotic transcription. Whereas Ser5 is phosphorylated in the initiation phase, Ser2 phosphorylation marks the elongation state. Here we show that the positive transcription elongation factor P-TEFb is a Ser5 CTD kinase that is unable to create Ser2/Ser5 double phosphorylations, while it exhibits fourfold higher activity on a CTD substrate pre-phosphorylated at Ser7 compared with the consensus hepta-repeat or the YSPTSPK variant. Mass spectrometry reveals an equal number of phosphorylations to the number of hepta-repeats provided, yet the mechanism of phosphorylation is distributive despite the repetitive nature of the substrate. Inhibition of P-TEFb activity is mediated by two regions in Hexim1 that act synergistically on Cdk9 and Cyclin T1. HIV-1 Tat/TAR abrogates Hexim1 inhibition to stimulate transcription of viral genes but does not change the substrate specificity. Together, these results provide insight into the multifaceted pattern of CTD phosphorylation.


Asunto(s)
Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Serina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Fosforilación , Factor B de Elongación Transcripcional Positiva/genética , Unión Proteica , Estructura Terciaria de Proteína , ARN Polimerasa II/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Serina/genética , Factores de Transcripción
6.
Mol Cell Biol ; 32(13): 2372-83, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22508988

RESUMEN

In fission yeast, discrete steps in mRNA maturation and synthesis depend on a complex containing the 5'-cap methyltransferase Pcm1 and Cdk9, which phosphorylates the RNA polymerase II (Pol II) carboxyl-terminal domain (CTD) and the processivity factor Spt5 to promote transcript elongation. Here we show that a Cdk9 carboxyl-terminal extension, distinct from the catalytic domain, mediates binding to both Pcm1 and the Pol II CTD. Removal of this segment diminishes Cdk9/Pcm1 chromatin recruitment and Spt5 phosphorylation in vivo and leads to slow growth and hypersensitivity to cold temperature, nutrient limitation, and the IMP dehydrogenase inhibitor mycophenolic acid (MPA). These phenotypes, and the Spt5 phosphorylation defect, are suppressed by Pcm1 overproduction, suggesting that normal transcript elongation and gene expression depend on physical linkage between Cdk9 and Pcm1. The extension is dispensable, however, for recognition of CTD substrates "primed" by Mcs6 (Cdk7). On defined peptide substrates in vitro, Cdk9 prefers CTD repeats phosphorylated at Ser7 over unmodified repeats. In vivo, Ser7 phosphorylation depends on Mcs6 activity, suggesting a conserved mechanism, independent of chromatin recruitment, to order transcriptional CDK functions. Therefore, fission yeast Cdk9 comprises a catalytic domain sufficient for primed substrate recognition and a multivalent recruitment module that couples transcription with capping.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/química , Quinasa 9 Dependiente de la Ciclina/metabolismo , Nucleotidiltransferasas/metabolismo , Factor B de Elongación Transcripcional Positiva/química , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Dominio Catalítico , Quinasa 9 Dependiente de la Ciclina/genética , Activación Enzimática , Genes Fúngicos , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Biológicos , Mutación , Nucleotidiltransferasas/genética , Fosforilación , Factor B de Elongación Transcripcional Positiva/genética , Dominios y Motivos de Interacción de Proteínas , ARN Polimerasa II/genética , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Serina/química , Especificidad por Sustrato , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...