RESUMEN
Calcium aluminosilicate glasses have technological importance for a variety of industrial applications. However, the short-range structure of this glass system remains widely debated regarding the formation of oxygen triclusters. It is argued that triclusters are observed in high percentages within molecular dynamics simulations because of the high melting temperatures and correspondingly high fictive temperatures. This work explores the formation of such structural units by first simulating various compositions at different liquid temperatures to understand thermodynamic factors affecting the formation of such species. Structural results are then implemented into a statistical mechanical model which can predict the formation of triclusters at a given fictive temperature. Results show temperature and composition dependence of these structures, with aluminum charge modification favored in the peraluminous regime. It is concluded that oxygen triclusters are the preferred method of charge compensation even when extrapolating to laboratory fictive temperatures, indicating that triclusters are not a byproduct of simulation timescales.
RESUMEN
Atomic structure dictates the performance of all materials systems; the characteristic of disordered materials is the significance of spatial and temporal fluctuations on composition-structure-property-performance relationships. Glass has a disordered atomic arrangement, which induces localized distributions in physical properties that are conventionally defined by average values. Quantifying these statistical distributions (including variances, fluctuations, and heterogeneities) is necessary to describe the complexity of glass-forming systems. Only recently have rigorous theories been developed to predict heterogeneities to manipulate and optimize glass properties. This article provides a comprehensive review of experimental, computational, and theoretical approaches to characterize and demonstrate the effects of short-, medium-, and long-range statistical fluctuations on physical properties (e.g., thermodynamic, kinetic, mechanical, and optical) and processes (e.g., relaxation, crystallization, and phase separation), focusing primarily on commercially relevant oxide glasses. Rigorous investigations of fluctuations enable researchers to improve the fundamental understanding of the chemistry and physics governing glass-forming systems and optimize structure-property-performance relationships for next-generation technological applications of glass, including damage-resistant electronic displays, safer pharmaceutical vials to store and transport vaccines, and lower-attenuation fiber optics. We invite the reader to join us in exploring what can be discovered by going beyond the average.