Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 9(42): 16412-16419, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29058741

RESUMEN

This work reports an electronic and micro-structural study of an appealing system for optoelectronics: tungsten disulfide (WS2) on epitaxial graphene (EG) on SiC(0001). The WS2 is grown via chemical vapor deposition (CVD) onto the EG. Low-energy electron diffraction (LEED) measurements assign the zero-degree orientation as the preferential azimuthal alignment for WS2/EG. The valence-band (VB) structure emerging from this alignment is investigated by means of photoelectron spectroscopy measurements, with both high space and energy resolution. We find that the spin-orbit splitting of monolayer WS2 on graphene is of 462 meV, larger than what is reported to date for other substrates. We determine the value of the work function for the WS2/EG to be 4.5 ± 0.1 eV. A large shift of the WS2 VB maximum is observed as well, due to the lowering of the WS2 work function caused by the donor-like interfacial states of EG. Density functional theory (DFT) calculations carried out on a coincidence supercell confirm the experimental band structure to an excellent degree. X-ray photoemission electron microscopy (XPEEM) measurements performed on single WS2 crystals confirm the van der Waals nature of the interface coupling between the two layers. In virtue of its band alignment and large spin-orbit splitting, this system gains strong appeal for optical spin-injection experiments and opto-spintronic applications in general.

2.
Phys Rev Lett ; 113(24): 246406, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25541787

RESUMEN

An atomistic method of calculating the spin-lattice relaxation times (T1) is presented for donors in silicon nanostructures comprising of millions of atoms. The method takes into account the full band structure of silicon including the spin-orbit interaction. The electron-phonon Hamiltonian, and hence, the deformation potential, is directly evaluated from the strain-dependent tight-binding Hamiltonian. The technique is applied to single donors and donor clusters in silicon, and explains the variation of T1 with the number of donors and electrons, as well as donor locations. Without any adjustable parameters, the relaxation rates in a magnetic field for both systems are found to vary as B5, in excellent quantitative agreement with experimental measurements. The results also show that by engineering electronic wave functions in nanostructures, T1 times can be varied by orders of magnitude.

3.
Nano Lett ; 11(10): 4376-81, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21919458

RESUMEN

Real-time sensing of (spin-dependent) single-electron tunneling is fundamental to electrical readout of qubit states in spin quantum computing. Here, we demonstrate the feasibility of detecting such single-electron tunneling events using an atomically planar charge sensing layout, which can be readily integrated in scalable quantum computing architectures with phosphorus-donor-based spin qubits in silicon (Si:P). Using scanning tunneling microscopy (STM) lithography on a Si(001) surface, we patterned a single-electron transistor (SET), both tunnel and electrostatically coupled to a coplanar ultrasmall quantum dot, the latter consisting of approximately four P donors. Charge transitions of the quantum dot could be detected both in time-averaged and single-shot current response of the SET. Single electron tunneling between the quantum dot and the SET island on a time-scale (τ ∼ ms) two-orders-of-magnitude faster than the spin-lattice relaxation time of a P donor in Si makes this device geometry suitable for projective readout of Si:P spin qubits. Crucial to scalability is the ability to reproducibly achieve sufficient electron tunnel rates and charge sensitivity of the SET. The inherent atomic-scale control of STM lithography bodes extremely well to precisely optimize both of these parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...