Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; 18(33): e2202080, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35678101

RESUMEN

The ability to tailor the properties of metal centers in single-atom heterogeneous catalysts depends on the availability of advanced approaches for characterization of their structure. Except for specific host materials with well-defined metal adsorption sites, determining the local atomic environment remains a crucial challenge, often relying heavily on simulations. This article reports an advanced analysis of platinum atoms stabilized on poly(triazine imide), a nanocrystalline form of carbon nitride. The approach discriminates the distribution of surface coordination sites in the host, the evolution of metal coordination at different stages during the synthesis of the material, and the potential locations of metal atoms within the lattice. Consistent with density functional theory predictions, simultaneous high-resolution imaging in high-angle annular dark field and bright field modes experimentally confirms the preferred localization of platinum in-plane in the corners of the triangular cavities. X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and dynamic nuclear polarization enhanced 15 N nuclear magnetic resonance (DNP-NMR) spectroscopies coupled with density functional theory (DFT) simulations reveal that the predominant metal species comprise Pt(II) bound to three nitrogen atoms and one chlorine atom inside the coordination sites. The findings, which narrow the gap between experimental and theoretical elucidation, contribute to the improved structural understanding and provide a benchmark for exploring the speciation of single-atom catalysts based on carbon nitrides.

2.
Small ; 18(15): e2200224, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35224866

RESUMEN

The introduction of a foreign metal atom in the coordination environment of single-atom catalysts constitutes an exciting frontier of active-site engineering, generating bimetallic low-nuclearity catalysts often exhibiting unique catalytic synergies. To date, the exploration of their full scope is thwarted by (i) the lack of synthetic techniques with control over intermetallic coordination, and (ii) the challenging characterization of these materials. Herein, carbon-host functionalization is presented as a strategy to selectively generate Au-Ru dimers and isolated sites by simple incipient wetness impregnation, as corroborated by careful X-ray absorption spectroscopy analysis. The distinct catalytic fingerprints are unveiled via the hydrogen evolution reaction, employed as a probe for proton adsorption properties. Intriguingly, the virtually inactive Au atoms enhance the reaction kinetics of their Ru counterparts already when spatially isolated, by shifting the proton adsorption free energy closer to neutrality. Remarkably, the effect is magnified by a factor of 2 in dimers. These results exemplify the relevance of controlling intermetallic coordination for the rational design of bimetallic low-nuclearity catalysts.


Asunto(s)
Carbono , Protones , Adsorción , Catálisis , Hidrógeno/química
3.
ACS Appl Mater Interfaces ; 14(6): 8417-8426, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35107245

RESUMEN

The development of controlled processes for continuous hydrogen generation from solid-state storage chemicals such as ammonia borane is central to integrating renewable hydrogen into a clean energy mix. However, to date, most reported platforms operate in batch mode, posing a challenge for controllable hydrogen release, catalyst reusability, and large-scale operation. To address these issues, we developed flow-through wood-based catalytic microreactors, characterized by inherent natural oriented microchannels. The prepared structured catalysts utilize silver-promoted palladium nanoparticles supported on metal-organic framework (MOF)-coated wood microreactors as the active phase. Catalytic tests demonstrate their highly controllable hydrogen production in continuous mode, and by adjusting the ammonia borane flow and wood species, we reach stable productivities of up to 10.4 cmH23 min-1 cmcat-3. The modular design of the structured catalysts proves readily scalable. Our versatile approach is applicable for other metals and MOF combinations, thus comprising a sustainable and scalable platform for catalytic dehydrogenations and applications in the energy-water nexus.

4.
Nat Commun ; 12(1): 4016, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188049

RESUMEN

For decades, carbons have been the support of choice in acetylene hydrochlorination, a key industrial process for polyvinyl chloride manufacture. However, no unequivocal design criteria could be established to date, due to the complex interplay between the carbon host and the metal nanostructure. Herein, we disentangle the roles of carbon in determining activity and stability of platinum-, ruthenium-, and gold-based hydrochlorination catalysts and derive descriptors for optimal host design, by systematically varying the porous properties and surface functionalization of carbon, while preserving the active metal sites. The acetylene adsorption capacity is identified as central activity descriptor, while the density of acidic oxygen sites determines the coking tendency and thus catalyst stability. With this understanding, a platinum single-atom catalyst is developed with stable catalytic performance under two-fold accelerated deactivation conditions compared to the state-of-the-art system, marking a step ahead towards sustainable PVC production.

5.
ChemSusChem ; 14(14): 2914-2923, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-33999513

RESUMEN

The impact of carbon monoxide on CO2 -to-methanol catalysts has been scarcely investigated, although CO will comprise up to half of the carbon feedstock, depending on the origin of CO2 and process configuration. In this study, copper-based systems and ZnO-ZrO2 are assessed in cycling experiments with hybrid CO2 -CO feeds and their CO sensitivity is compared to In2 O3 -based materials. All catalysts are found to be promoted upon CO addition. Copper-based systems are intrinsically more active in CO hydrogenation and profit from exploiting this carbon source for methanol production, whereas CO induces surplus formation of oxygen vacancies (i. e., the catalytic sites) on ZnO-ZrO2 , as in In2 O3 -based systems. Mild-to-moderate deactivation occurs upon re-exposure to CO2 -rich streams, owing to water-induced sintering for all catalysts except ZnO-ZrO2 , which responds reversibly to feed variations, likely owing to its more hydrophobic nature and the atomic mixing of its metal components. Catalytic systems are categorized for operation in hybrid CO2 -CO feeds, emphasizing the significance of catalyst and process design to foster advances in CO2 utilization technologies.

6.
Small ; 17(16): e2005234, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33464715

RESUMEN

The identification of the active sites and the derivation of structure-performance relationships are central for the development of high-performance heterogeneous catalysts. Here, a platform of platinum nanostructures, ranging from single atoms to nanoparticles of ≈4 nm supported on activated- and N-doped carbon (AC and NC), is employed to systematically assess nuclearity and host effects on the activity, selectivity, and stability in dibromomethane hydrodebromination, a key step in bromine-mediated methane functionalization processes. For this purpose, catalytic evaluation is coupled to in-depth characterization, kinetic analysis, and mechanistic studies based on density functional theory. Remarkably, the single atom catalysts achieve exceptional selectivity toward CH3 Br (up to 98%) when compared to nanoparticles and any previously reported system. Furthermore, the results reveal unparalleled specific activity over 1.3-2.3 nm-sized platinum nanoparticles, which also exhibit the highest stability. Additionally, host effects are found to markedly affect the catalytic performance. Specifically, on NC, the activity and CH3 Br selectivity are enhanced, but significant fouling occurs. On the other hand, AC-supported platinum nanostructures deactivate due to sintering and bromination. Simulations and kinetic fingerprints demonstrate that the observed reactivity patterns are governed by the H2 dissociation abilities of the catalysts and the availability of surface H-atoms.

7.
Angew Chem Int Ed Engl ; 59(44): 19639-19644, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-32628798

RESUMEN

Chemical modifiers enhance the efficiency of metal catalysts in numerous applications, but their introduction often involves toxic or expensive precursors and complicates the synthesis. Here, we show that a porous boron nitride carrier can directly modify supported palladium nanoparticles, originating unparalleled performance in the continuous semi-hydrogenation of alkynes. Analysis of the impact of various structural parameters reveals that using a defective high surface area boron nitride and ensuring a palladium particle size of 4-5 nm is critical for maximizing the specific rate. The combined experimental and theoretical analyses point towards boron incorporation from defects in the support to the palladium subsurface, creating the desired isolated ensembles determining the selectivity. This practical approach highlights the unexplored potential of using tailored carriers for catalyst design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...