RESUMEN
Alterations in the function of K+ channels such as the voltage- and Ca2+-activated K+ channel of large conductance (BKCa) reportedly promote breast cancer (BC) development and progression. Underlying molecular mechanisms remain, however, elusive. Here, we provide electrophysiological evidence for a BKCa splice variant localized to the inner mitochondrial membrane of murine and human BC cells (mitoBKCa). Through a combination of genetic knockdown and knockout along with a cell permeable BKCa channel blocker, we show that mitoBKCa modulates overall cellular and mitochondrial energy production, and mediates the metabolic rewiring referred to as the 'Warburg effect', thereby promoting BC cell proliferation in the presence and absence of oxygen. Additionally, we detect mitoBKCa and BKCa transcripts in low or high abundance, respectively, in clinical BC specimens. Together, our results emphasize, that targeting mitoBKCa could represent a treatment strategy for selected BC patients in future.
Asunto(s)
Neoplasias de la Mama , Humanos , Animales , Ratones , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Mitocondrias/metabolismo , Mitocondrias/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Membranas Mitocondriales/metabolismo , Femenino , Metabolismo EnergéticoRESUMEN
BACKGROUND AND AIMS: The liver has a remarkable capacity to regenerate, which is sustained by the ability of hepatocytes to act as facultative stem cells that, while normally quiescent, re-enter the cell cycle after injury. Growth factor signaling is indispensable in rodents, whereas Wnt/ß-catenin is not required for effective tissue repair. However, the molecular networks that control human liver regeneration remain unclear. METHODS: Organotypic 3D spheroid cultures of primary human or murine hepatocytes were used to identify the signaling network underlying cell cycle re-entry. Furthermore, we performed chemogenomic screening of a library enriched for epigenetic regulators and modulators of immune function to determine the importance of epigenomic control for human hepatocyte regeneration. RESULTS: Our results showed that, unlike in rodents, activation of Wnt/ß-catenin signaling is the major mitogenic cue for adult primary human hepatocytes. Furthermore, we identified TGFß inhibition and inflammatory signaling through NF-κB as essential steps for the quiescent-to-regenerative switch that allows Wnt/ß-catenin-induced proliferation of human cells. In contrast, growth factors, but not Wnt/ß-catenin signaling, triggered hyperplasia in murine hepatocytes. High-throughput screening in a human model confirmed the relevance of NFκB and revealed the critical roles of polycomb repressive complex 2, as well as of the bromodomain families I, II, and IV. CONCLUSIONS: This study revealed a network of NFκB, TGFß, and Wnt/ß-catenin that controls human hepatocyte regeneration in the absence of exogenous growth factors, identified novel regulators of hepatocyte proliferation, and highlighted the potential of organotypic culture systems for chemogenomic interrogation of complex physiological processes.
RESUMEN
Induction of cytochrome P450 (CYP) genes constitutes an important cause of drug-drug interactions and preclinical evaluation of induction liability is mandatory for novel drug candidates. YAP/TEAD signaling has emerged as an attractive target for various oncological indications and multiple chemically distinct YAP/TEAD inhibitors are rapidly progressing towards clinical stages. Here, we tested the liability for CYP induction of a diverse set of YAP/TEAD inhibitors with different modes of action and TEAD isoform selectivity profiles in monolayers and 3D spheroids of primary human hepatocytes (PHH). We found that YAP/TEAD inhibition resulted in broad induction of CYPs in 2D monolayers, whereas, if at all, only marginal induction was seen in spheroid culture. Comprehensive RNA-Seq indicated that YAP/TEAD signaling was increased in 2D culture compared to spheroids, which was paralleled by elevated activities of the interacting transcription factors LXR and ESRRA, likely at least in part due to altered mechanosensing. Inhibition of this YAP/TEAD hyperactivation resulted in an overall reduction of hepatocyte dedifferentiation marked by increased hepatic functionality, including CYPs. These results thus demonstrate that the observed induction is due to on-target effects of the compounds rather than direct activation of xenobiotic sensing nuclear receptors. Combined, the presented data link hepatocyte dedifferentiation to YAP/TEAD dysregulation, reveal a novel non-canonical pathway of CYP induction and highlight the advantage of organotypic 3D cultures to predict clinically relevant pharmacokinetic properties, particularly for atypical induction mechanisms.
Asunto(s)
Sistema Enzimático del Citocromo P-450 , Transducción de Señal , Humanos , Sistema Enzimático del Citocromo P-450/genética , Desdiferenciación Celular , Hepatocitos , Factores de TranscripciónAsunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Pronóstico , Nefrectomía , BiomarcadoresRESUMEN
Since their initial description by Elie Metchnikoff, phagocytes have sparked interest in a variety of biologic disciplines. These important cells perform central functions in tissue repair and immune activation as well as tolerance. Myeloid cells can be immunoinhibitory, particularly in the tumor microenvironment, where their presence is generally associated with poor patient prognosis. These cells are highly adaptable and plastic, and can be modulated to perform desired functions such as antitumor activity, if key programming molecules can be identified. Human clear cell renal cell carcinoma (ccRCC) is considered immunogenic; yet checkpoint blockades that target T cell dysfunction have shown limited clinical efficacy, suggesting additional layers of immunoinhibition. We previously described "enriched-in-renal cell carcinoma" (erc) DCs that were often found in tight contact with dysfunctional T cells. Using transcriptional profiling and flow cytometry, we describe here that ercDCs represent a mosaic cell type within the macrophage continuum co-expressing M1 and M2 markers. The polarization state reflects tissue-specific signals that are characteristic of RCC and renal tissue homeostasis. ErcDCs are tissue-resident with increasing prevalence related to tumor grade. Accordingly, a high ercDC score predicted poor patient survival. Within the profile, therapeutic targets (VSIG4, NRP1, GPNMB) were identified with promise to improve immunotherapy.
Asunto(s)
Productos Biológicos , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/patología , Macrófagos/metabolismo , Células Dendríticas , Plásticos/metabolismo , Productos Biológicos/metabolismo , Microambiente Tumoral , Glicoproteínas de Membrana/metabolismoRESUMEN
Aberrant glucose homeostasis is the most common metabolic disturbance affecting one in ten adults worldwide. Prediabetic hyperglycemia due to dysfunctional interactions between different human tissues, including pancreas and liver, constitutes the largest risk factor for the development of type 2 diabetes. However, this early stage of metabolic disease has received relatively little attention. Microphysiological tissue models that emulate tissue crosstalk offer emerging opportunities to study metabolic interactions. Here, a novel modular multitissue organ-on-a-chip device is presented that allows for integrated and reciprocal communication between different 3D primary human tissue cultures. Precisely controlled heterologous perfusion of each tissue chamber is achieved through a microfluidic single "synthetic heart" pneumatic actuation unit connected to multiple tissue chambers via specific configuration of microchannel resistances. On-chip coculture experiments of organotypic primary human liver spheroids and intact primary human islets demonstrate insulin secretion and hepatic insulin response dynamics at physiological timescales upon glucose challenge. Integration of transcriptomic analyses with promoter motif activity data of 503 transcription factors reveals tissue-specific interacting molecular networks that underlie ß-cell stress in prediabetic hyperglycemia. Interestingly, liver and islet cultures show surprising counter-regulation of transcriptional programs, emphasizing the power of microphysiological coculture to elucidate the systems biology of metabolic crosstalk.
Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Microfluídica , Hígado , Páncreas , GlucosaRESUMEN
BACKGROUND: Renal cell carcinoma (RCC) is a heterogeneous disease comprising histologically defined subtypes. For therapy selection, precise subtype identification and individualized prognosis are mandatory, but currently limited. Our aim was to refine subtyping and outcome prediction across main subtypes, assuming that a tumor is composed of molecular features present in distinct pathological subtypes. METHODS: Individual RCC samples were modeled as linear combination of the main subtypes (clear cell (ccRCC), papillary (pRCC), chromophobe (chRCC)) using computational gene expression deconvolution. The new molecular subtyping was compared with histological classification of RCC using the Cancer Genome Atlas (TCGA) cohort (n = 864; ccRCC: 512; pRCC: 287; chRCC: 65) as well as 92 independent histopathologically well-characterized RCC. Predicted continuous subtypes were correlated to cancer-specific survival (CSS) in the TCGA cohort and validated in 242 independent RCC. Association with treatment-related progression-free survival (PFS) was studied in the JAVELIN Renal 101 (n = 726) and IMmotion151 trials (n = 823). CSS and PFS were analyzed using the Kaplan-Meier and Cox regression analysis. RESULTS: One hundred seventy-four signature genes enabled reference-free molecular classification of individual RCC. We unambiguously assign tumors to either ccRCC, pRCC, or chRCC and uncover molecularly heterogeneous tumors (e.g., with ccRCC and pRCC features), which are at risk of worse outcome. Assigned proportions of molecular subtype-features significantly correlated with CSS (ccRCC (P = 4.1E - 10), pRCC (P = 6.5E - 10), chRCC (P = 8.6E - 06)) in TCGA. Translation into a numerical RCC-R(isk) score enabled prognosis in TCGA (P = 9.5E - 11). Survival modeling based on the RCC-R score compared to pathological categories was significantly improved (P = 3.6E - 11). The RCC-R score was validated in univariate (P = 3.2E - 05; HR = 3.02, 95% CI: 1.8-5.08) and multivariate analyses including clinicopathological factors (P = 0.018; HR = 2.14, 95% CI: 1.14-4.04). Heterogeneous PD-L1-positive RCC determined by molecular subtyping showed increased PFS with checkpoint inhibition versus sunitinib in the JAVELIN Renal 101 (P = 3.3E - 04; HR = 0.52, 95% CI: 0.36 - 0.75) and IMmotion151 trials (P = 0.047; HR = 0.69, 95% CI: 0.48 - 1). The prediction of PFS significantly benefits from classification into heterogeneous and unambiguous subtypes in both cohorts (P = 0.013 and P = 0.032). CONCLUSION: Switching from categorical to continuous subtype classification across most frequent RCC subtypes enables outcome prediction and fosters personalized treatment strategies.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Antígeno B7-H1 , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Humanos , Inmunoterapia , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Pronóstico , SunitinibRESUMEN
Renal cell carcinoma (RCC) is a kidney cancer with an onset mainly during the sixth or seventh decade of the patient's life. Patients with advanced, metastasized RCC have a poor prognosis. The majority of patients develop treatment resistance towards Standard of Care (SoC) drugs within months. Tyrosine kinase inhibitors (TKIs) are the backbone of first-line therapy and have been partnered with an immune checkpoint inhibitor (ICI) recently. Despite the most recent progress, the development of novel therapies targeting acquired TKI resistance mechanisms in advanced and metastatic RCC remains a high medical need. Preclinical models with high translational relevance can significantly support the development of novel personalized therapies. It has been demonstrated that patient-derived xenograft (PDX) models represent an essential tool for the preclinical evaluation of novel targeted therapies and their combinations. In the present project, we established and molecularly characterized a comprehensive panel of subcutaneous RCC PDX models with well-conserved molecular and pathological features over multiple passages. Drug screening towards four SoC drugs targeting the vascular endothelial growth factor (VEGF) and PI3K/mTOR pathway revealed individual and heterogeneous response profiles in those models, very similar to observations in patients. As unique features, our cohort includes PDX models from metastatic disease and multi-tumor regions from one patient, allowing extended studies on intra-tumor heterogeneity (ITH). The PDX models are further used as basis for developing corresponding in vitro cell culture models enabling advanced high-throughput drug screening in a personalized context. PDX models were subjected to next-generation sequencing (NGS). Characterization of cancer-relevant features including driver mutations or cellular processes was performed using mutational and gene expression data in order to identify potential biomarker or treatment targets in RCC. In summary, we report a newly established and molecularly characterized panel of RCC PDX models with high relevance for translational preclinical research.
RESUMEN
The hepatic Na+-taurocholate cotransporting polypeptide NTCP/SLC10A1 is important for the uptake of bile salts and selected drugs. Its inhibition results in increased systemic bile salt concentrations. NTCP is also the entry receptor for the hepatitis B/D virus. We investigated interindividual hepatic SLC10A1/NTCP expression using various omics technologies. SLC10A1/NTCP mRNA expression/protein abundance was quantified in well-characterized 143 human livers by real-time PCR and LC-MS/MS-based targeted proteomics. Genome-wide SNP arrays and SLC10A1 next-generation sequencing were used for genomic analyses. SLC10A1 DNA methylation was assessed through MALDI-TOF MS. Transcriptomics and untargeted metabolomics (UHPLC-Q-TOF-MS) were correlated to identify NTCP-related metabolic pathways. SLC10A1 mRNA and NTCP protein levels varied 44-fold and 10.4-fold, respectively. Non-genetic factors (e.g., smoking, alcohol consumption) influenced significantly NTCP expression. Genetic variants in SLC10A1 or other genes do not explain expression variability which was validated in livers (n = 50) from The Cancer Genome Atlas. The identified two missense SLC10A1 variants did not impair transport function in transfectants. Specific CpG sites in SLC10A1 as well as single metabolic alterations and pathways (e.g., peroxisomal and bile acid synthesis) were significantly associated with expression. Inter-individual variability of NTCP expression is multifactorial with the contribution of clinical factors, DNA methylation, transcriptional regulation as well as hepatic metabolism, but not genetic variation.
Asunto(s)
Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Ácidos y Sales Biliares/metabolismo , Cromatografía Liquida , Virus de la Hepatitis B/genética , Virus de la Hepatitis Delta/genética , Humanos , Hígado/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/biosíntesis , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Simportadores/biosíntesis , Simportadores/genética , Simportadores/metabolismo , Espectrometría de Masas en Tándem , Ácido Taurocólico/metabolismoRESUMEN
BACKGROUND: The metabolic enzyme nicotinamide-N-methyltransferase (NNMT) is highly expressed in various cancer entities, suggesting tumour-promoting functions. We systematically investigated NNMT expression and its metabolic interactions in clear cell renal cell carcinoma (ccRCC), a prominent RCC subtype with metabolic alterations, to elucidate its role as a drug target. METHODS: NNMT expression was assessed in primary ccRCC (n = 134), non-tumour tissue and ccRCC-derived metastases (n = 145) by microarray analysis and/or immunohistochemistry. Findings were validated in The Cancer Genome Atlas (kidney renal clear cell carcinoma [KIRC], n = 452) and by single-cell analysis. Expression was correlated with clinicopathological data and survival. Metabolic alterations in NNMT-depleted cells were assessed by nontargeted/targeted metabolomics and extracellular flux analysis. The NNMT inhibitor (NNMTi) alone and in combination with the inhibitor 2-deoxy-D-glucose for glycolysis and BPTES (bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl-sulfide) for glutamine metabolism was investigated in RCC cell lines (786-O, A498) and in two 2D ccRCC-derived primary cultures and three 3D ccRCC air-liquid interface models. RESULTS: NNMT protein was overexpressed in primary ccRCC (p = 1.32 × 10-16 ) and ccRCC-derived metastases (p = 3.92 × 10-20 ), irrespective of metastatic location, versus non-tumour tissue. Single-cell data showed predominant NNMT expression in ccRCC and not in the tumour microenvironment. High NNMT expression in primary ccRCC correlated with worse survival in independent cohorts (primary RCC-hazard ratio [HR] = 4.3, 95% confidence interval [CI]: 1.5-12.4; KIRC-HR = 3.3, 95% CI: 2.0-5.4). NNMT depletion leads to intracellular glutamine accumulation, with negative effects on mitochondrial function and cell survival, while not affecting glycolysis or glutathione metabolism. At the gene level, NNMT-depleted cells upregulate glycolysis, oxidative phosphorylation and apoptosis pathways. NNMTi alone or in combination with 2-deoxy-D-glucose and BPTES resulted in inhibition of cell viability in ccRCC cell lines and primary tumour and metastasis-derived models. In two out of three patient-derived ccRCC air-liquid interface models, NNMTi treatment induced cytotoxicity. CONCLUSIONS: Since efficient glutamine utilisation, which is essential for ccRCC tumours, depends on NNMT, small-molecule NNMT inhibitors provide a novel therapeutic strategy for ccRCC and act as sensitizers for combination therapies.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Desoxiglucosa , Glucosa , Glutamina , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Niacinamida/farmacología , Microambiente TumoralRESUMEN
Metastatic renal cell carcinoma (RCC) exhibits poor prognosis. Better knowledge of distant metastases is crucial to foster personalized treatment strategies. Here, we aimed to investigate the genetic landscape of metastases, including synchronous and/or recurrent metastases to elucidate potential drug target genes and clinically relevant mutations in a real-world setting of patients. We assessed 81 metastases from 56 RCC patients, including synchronous and/or recurrent metastases of 19 patients. Samples were analysed through next-generation sequencing with a high coverage (~1000× mean coverage). We therefore established a novel sequencing panel comprising 32 genes with impact on RCC development. We observed a high frequency of mutations in known RCC driver genes (e.g., >40% carriers of VHL and PBRM1 mutations) in metastases irrespective of the metastatic site. The somatic mutational composition was significantly associated with cancer-specific survival (p(logrank) = 0.03). Moreover, we identified in 34 patients at least one drug target gene as well as clinically relevant mutations listed in the VICC Meta-Knowledgebase in 7%. In addition to significantly higher mutational burden in recurrent metastases compared to earlier ones, synchronous and/or recurrent metastases of individual patients, even after a time-period >2 yrs, shared a high proportion of somatic events. Our data demonstrate the importance of somatic profiling in metastases for precision medicine in RCC.
RESUMEN
PURPOSE: Patients with estrogen receptor- and/or progesterone receptor-positive, early breast cancer benefit from hormonal treatment, yet high global death burdens due to high prevalence and long-term recurrence risk call for biomarkers to guide additional treatment approaches. EXPERIMENTAL DESIGN: From a prospective, observational study of postmenopausal early breast cancer patients treated with tamoxifen or aromatase inhibitors, gene expression analyses of 612 tumors was performed using the NanoString Breast Cancer 360 panel to interrogate 23 breast cancer pathways. Candidate signatures associated with disease subtype and event-free survival (EFS) were obtained by cluster analysis, Cox modeling, and conditional inference trees, and were independently tested in 613 patients from BreastMark. Tumor-infiltrating lymphocytes (TIL) were assessed on tissue sections, and mutational burden was assessed in 36 tumors by whole-exome sequencing. RESULTS: PAM50-derived classification distinguished lower-risk (Luminal A) from higher-risk subtypes (Luminal B, P = 0.04; HER2, P = 0.006; Basal, P = 0.008). In higher-risk patients, shorter EFS was associated with low androgen receptor [HR = 3.61; 95% confidence interval (CI), 1.72-7.56; P = 0.001] or high BRCAness signature expression (HR = 3.58; 95% CI, 1.19-10.7; P = 0.023). BRCAness was independently confirmed as a predictor of shorter EFS (HR = 2.64; 95% CI, 1.31-5.34; P = 0.007). About 13%-15% of patients, enriched for high-grade, higher-risk subtypes (P ≤ 0.0001), had strong expression of the Tumor Inflammation Signature (TIS) suggestive of an inhibited antitumor immune response. TIS scores were strongly associated with TIL numbers (P < 1e-30) but not with tumor mutation status. CONCLUSIONS: BRCA-related DNA repair deficiency and suppressed tumor immune responses may be clinically relevant predictors of endocrine therapy complementing treatment options in subgroups of hormone-sensitive early breast cancer.
Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores de Tumor/genética , Neoplasias de la Mama/patología , Inflamación/inmunología , Transcriptoma , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Femenino , Estudios de Seguimiento , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Persona de Mediana Edad , Pronóstico , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Estudios RetrospectivosRESUMEN
MOTIVATION: Pairing between the target sequence and the 6-8 nt long seed sequence of the miRNA presents the most important feature for miRNA target site prediction. Novel high-throughput technologies such as Argonaute HITS-CLIP afford meanwhile a detailed study of miRNA:mRNA duplices. These interaction maps enable a first discrimination between functional and non-functional target sites in a bulky fashion. Prediction algorithms apply different seed paradigms to identify miRNA target sites. Therefore, a quantitative assessment of miRNA target site prediction is of major interest. RESULTS: We identified a set of canonical seed types based on a transcriptome wide analysis of experimentally verified functional target sites. We confirmed the specificity of long seeds but we found that the majority of functional target sites are formed by less specific seeds of only 6 nt indicating a crucial role of this type. A substantial fraction of genuine target sites arenon-conserved. Moreover, the majority of functional sites remain uncovered by common prediction methods.