Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Harmful Algae ; 98: 101889, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-33129449

RESUMEN

Raphidiopsis raciborskii is a freshwater, potentially toxigenic cyanobacterium, originally described as a tropical species that is spreading to northern regions over several decades. The ability of R. raciborskii to produce cyanotoxins - in particular the alkaloid cylindrospermopsin (CYN), which is toxic to humans and animals - is of serious concern. The first appearance of R. raciborskii in Russia was noted in Lake Nero in the summer of 2010. This is the northernmost (57°N) recorded case of the simultaneous presence of R. raciborskii and detection of CYN. In this study, the data from long-term monitoring of the R. raciborskii population, temperature and light conditions in Lake Nero were explored. CYN and cyr/aoa genes present in environmental samples were examined using HPLC/MS-MS and PCR analysis. A R. raciborskii strain (R104) was isolated and its morphology, toxigenicity and phylogeography were studied. It is supposed that the trigger factor for the strong development of R. raciborskii in Lake Nero in summer 2010 may have been the relatively high water temperature, reaching 29-30 °C. Strain R. raciborskii R104 has straight trichomes and can produce akinetes, making it morphologically similar to European strains. Phylogeographic analysis based on nifH gene and 16S-23S rRNA ITS1 sequences showed that the Russian strain R104 grouped together with R. raciborskii strains isolated from Portugal, France, Germany and Hungary. The Russian strain R104 does not contain cyrA and cyrB genes, meaning that it - like all European strains - cannot produce CYN. Thus, while recent invasion of R. raciborskii into Lake Nero has occurred, morphological, genetic, and toxicological data supported the spreading of this cyanobacterium from other European lakes. Detection of CYN and cyr/aoa genes in environmental samples indicated the cyanobacterium Aphanizomenon gracile as a likely producer of CYN in Lake Nero. The article also discusses data on the global biogeography of R. raciborskii. Genetic similarity between R. raciborskii strains isolated from very remote continents might be related to the ancient origin of the cyanobacterium inhabiting the united continents of Laurasia and Gondwana, rather than comparably recent transoceanic exchange between R. raciborskii populations.


Asunto(s)
Lagos , Animales , Aphanizomenon , Cylindrospermopsis , Francia , Filogeografía , Portugal , Federación de Rusia
2.
Toxicon ; 130: 47-55, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28235579

RESUMEN

Last decades, cyanobacterial blooms have been commonly reported in Russia. Among the boom-forming species, potential toxin producers have been identified. The aim of this paper was to study the presence of neurotoxic compounds - saxitoxins and anatoxin-a - in water bodies from different regions of Russia. We also made attempts to identify the neurotoxin-producing genera. The good convergence of the results obtained by light microscopy, PCR and LC-MS/MS analyses indicated the presence of active neurotoxin producing species in all investigated water bodies. Saxitoxin was detected in phytoplankton from 4 water bodies in Central European Russia and West Siberia, including lake and reservoirs used as a source for potable water. The water bodies differed with the respect of saxitoxin producers which belonged to Aphanizomenon and/or Dolichospermum genera. For the first time, we obtained quantitative data on the intracellular saxitoxin concentration in Russian freshwaters using LC-MS/MS. Anatoxin-a was detected only in lakes of Northwestern Russia. In the eutrophic shallow Lower Suzdal Lake, Aphanizomenon was the stated anatoxin-a-producing genus. In the large shallow artificial hypertrophic Sestroretskij Razliv Lake, it was very likely that both dominant species - Aphanizomenon flos-aquae and Dolichospermum planctonicum - were anatoxin-a producers.


Asunto(s)
Aphanizomenon/metabolismo , Cianobacterias/metabolismo , Agua Dulce/química , Neurotoxinas/metabolismo , Aphanizomenon/genética , Aphanizomenon/aislamiento & purificación , Cromatografía Liquida , Cianobacterias/genética , Cianobacterias/aislamiento & purificación , Toxinas de Cianobacterias , Monitoreo del Ambiente , Agua Dulce/microbiología , Espectrometría de Masas , Neurotoxinas/química , Neurotoxinas/aislamiento & purificación , Federación de Rusia , Saxitoxina/química , Saxitoxina/aislamiento & purificación , Saxitoxina/metabolismo , Tropanos/química , Tropanos/aislamiento & purificación , Tropanos/metabolismo
3.
Aquat Biosyst ; 9(1): 18, 2013 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-24079446

RESUMEN

BACKGROUND: The permanent dominance of Planktothrix-like сyanobacteria has been often reported for shallow eutrophic\hypertrophic lakes in central Europe in summer\autumn. However studies on phytoplankton growth under ice cover in nutrient-rich lakes are very scarce. Lake Nero provides a good example of the contrasting seasonal extremes in environmental conditions. Moreover, the ecosystem underwent a catastrophic transition from eutrophic to hypertrophic 2003-05, with dominance of filamentous cyanobacteria in summer\autumn. Towards the end of the period of ice cover, there is an almost complete lack of light and oxygen but abundance in nutrients, especially ammonium nitrogen, soluble reactive phosphorus and total phosphorus in lake Nero. The aim of the present study was to describe species composition and abundance of the phytoplankton, in relation to the abiotic properties of the habitat to the end of winters 1999-2010. We were interested if Planktothrix-like сyanobacteria kept their dominant role under the ice conditions or only survived, and how did the under-ice phytoplankton community differ from year to year. RESULTS: Samples collected contained 172 algal taxa of sub-generic rank. Abundance of phytoplankton varied widely from very low to the bloom level. Cyanobacteria (Limnothrix, Pseudanabaena, Planktothrix) were present in all winter samples but did not always dominate. Favourable conditions included low winter temperature, thicker ice, almost complete lack of oxygen and high ammonium concentration. Flagellates belonging to Euglenophyta and Cryptophyta dominated in warmer winters, when phosphorus concentrations increased. CONCLUSION: A full picture of algal succession in the lake may be obtained only if systematic winter observations are taken into account. Nearly anoxic conditions, severe light deficiency and high concentration of biogenic elements present a highly selective environment for phytoplankton. Hypertrophic water bodies of moderate zone covered by ice in winter and dominated by Planktothrix - like сyanobacteria in summer/autumn may follow several scenarios in the end of winter. It may be intense proliferation сyanobacteria normally dominating in summer, or the switch to the other species like the euglenoids and cryptomonads flagellates, or almost total depletion of phytoplankton.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...