RESUMEN
As immunological selection for escape mutants continues to give rise to future SARS-CoV-2 variants, novel universal therapeutic strategies against ACE2-dependent viruses are needed. Here we present an IgM-based decavalent ACE2 decoy that has variant-agnostic efficacy. In immuno-, pseudovirus, and live virus assays, IgM ACE2 decoy had potency comparable or superior to leading SARS-CoV-2 IgG-based mAb therapeutics evaluated in the clinic, which were variant-sensitive in their potency. We found that increased ACE2 valency translated into increased apparent affinity for spike protein and superior potency in biological assays when decavalent IgM ACE2 was compared to tetravalent, bivalent, and monovalent ACE2 decoys. Furthermore, a single intranasal dose of IgM ACE2 decoy at 1 mg/kg conferred therapeutic benefit against SARS-CoV-2 Delta variant infection in a hamster model. Taken together, this engineered IgM ACE2 decoy represents a SARS-CoV-2 variant-agnostic therapeutic that leverages avidity to drive enhanced target binding, viral neutralization, and in vivo respiratory protection against SARS-CoV-2.
Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Animales , Cricetinae , Humanos , SARS-CoV-2 , Inmunoglobulina M , Unión ProteicaRESUMEN
BACKGROUND: Although cisplatin-based neoadjuvant chemotherapy (NAC) improves survival of unselected patients with muscle-invasive bladder cancer (MIBC), only a minority responds to therapy and chemoresistance remains a major challenge in this disease setting. OBJECTIVE: To investigate the clinical significance of oncofetal chondroitin sulfate (ofCS) glycosaminoglycan chains in cisplatin-resistant MIBC and to evaluate these as targets for second-line therapy. DESIGN, SETTING, AND PARTICIPANTS: An ofCS-binding recombinant VAR2CSA protein derived from the malaria parasite Plasmodium falciparum (rVAR2) was used as an in situ, in vitro, and in vivo ofCS-targeting reagent in cisplatin-resistant MIBC. The ofCS expression landscape was analyzed in two independent cohorts of matched pre- and post-NAC-treated MIBC patients. INTERVENTION: An rVAR2 protein armed with cytotoxic hemiasterlin compounds (rVAR2 drug conjugate [VDC] 886) was evaluated as a novel therapeutic strategy in a xenograft model of cisplatin-resistant MIBC. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Antineoplastic effects of targeting ofCS. RESULTS AND LIMITATIONS: In situ, ofCS was significantly overexpressed in residual tumors after NAC in two independent patient cohorts (p<0.02). Global gene-expression profiling and biochemical analysis of primary tumors and cell lines revealed syndican-1 and chondroitin sulfate proteoglycan 4 as ofCS-modified proteoglycans in MIBC. In vitro, ofCS was expressed on all MIBC cell lines tested, and VDC886 eliminated these cells in the low-nanomolar IC50 concentration range. In vivo, VDC886 effectively retarded growth of chemoresistant orthotopic bladder cancer xenografts and prolonged survival (p=0.005). The use of cisplatin only for the generation of chemoresistant xenografts are limitations of our animal model design. CONCLUSIONS: Targeting ofCS provides a promising second-line treatment strategy in cisplatin-resistant MIBC. PATIENT SUMMARY: Cisplatin-resistant bladder cancer overexpresses particular sugar chains compared with chemotherapy-naïve bladder cancer. Using a recombinant protein from the malaria parasite Plasmodium falciparum, we can target these sugar chains, and our results showed a significant antitumor effect in cisplatin-resistant bladder cancer. This novel treatment paradigm provides therapeutic access to bladder cancers not responding to cisplatin.
Asunto(s)
Antígenos de Protozoos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Sulfatos de Condroitina/metabolismo , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Oligopéptidos/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Antígenos de Protozoos/metabolismo , Antineoplásicos/efectos adversos , Colombia Británica , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Cisplatino/efectos adversos , Relación Dosis-Respuesta a Droga , Europa (Continente) , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Estimación de Kaplan-Meier , Ratones , Factores de Tiempo , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/mortalidad , Neoplasias de la Vejiga Urinaria/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification.
Asunto(s)
Antígenos de Protozoos/genética , Sulfatos de Condroitina/metabolismo , Melanoma Experimental/terapia , Placenta/metabolismo , Proteínas Recombinantes/administración & dosificación , Neoplasias Cutáneas/terapia , Animales , Antígenos de Protozoos/metabolismo , Línea Celular Tumoral , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Femenino , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Receptores de Hialuranos/metabolismo , Melanoma Experimental/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Terapia Molecular Dirigida , Oligopéptidos/genética , Oligopéptidos/metabolismo , Especificidad de Órganos , Embarazo , Proteínas Recombinantes/farmacología , Neoplasias Cutáneas/metabolismoRESUMEN
OBJECTIVE: Systemic lupus erythematosus (SLE) is a complex autoimmune disease that is driven in part by chronic B and T lymphocyte hyperresponsiveness to self antigens. A deficiency of interleukin-21 (IL-21) or IL-21 receptor (IL-21R) in mice dramatically reduces inflammation and B and T cell activation in models of autoimmunity, including SLE. However, whether IL-21 is essential for the maintenance and amplification of preestablished inflammation has not been widely examined in various animal models. The purpose of this study was to examine the impact of novel mouse IL-21R neutralizing antibodies on recall responses to antigen challenge and on disease progression in the (NZB × NZW)F1 (NZB/NZW) mouse model of SLE. METHODS: Humoral and cellular immune responses to immunization with sheep red blood cells (SRBCs) were measured in mice dosed with IL-21R blocking antibodies. Progression of nephritis and markers of immune activation was monitored in NZB/NZW mice following different anti-IL-21R treatment regimens. RESULTS: IL-21R blockade specifically inhibited secondary IgG responses to SRBC immunization. In NZB/NZW mice, IL-21R blockade completely inhibited the onset of nephritis, which was associated with dramatic reductions in splenomegaly and in B cell and T cell activation. When administered to mice with preexisting disease, anti-IL-21R antibody halted the disease progression and mortality and reversed the nephritis in a subset of mice. Furthermore, treatment cessation was not followed by rapid reemergence of disease. CONCLUSION: Our results highlight the importance of IL-21 in promoting humoral recall responses and in sustaining autoimmune inflammation.
Asunto(s)
Anticuerpos Bloqueadores/uso terapéutico , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Inmunidad Humoral/inmunología , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/inmunología , Receptores de Interleucina-21/antagonistas & inhibidores , Animales , Anticuerpos Bloqueadores/inmunología , Anticuerpos Bloqueadores/farmacología , Autoinmunidad/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/patología , Femenino , Inmunidad Humoral/efectos de los fármacos , Inmunoglobulina G/sangre , Lupus Eritematoso Sistémico/patología , Ratones , Ratones Endogámicos NZB , Receptores de Interleucina-21/efectos de los fármacos , Receptores de Interleucina-21/inmunología , Ovinos/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/patología , Resultado del TratamientoRESUMEN
Programmed cell-death 1 ligand 1 (PD-L1) is a member of the B7/CD28 family of proteins that control T-cell activation. Many tumors can upregulate expression of PD-L1, inhibiting antitumor T-cell responses and avoiding immune surveillance and elimination. We have identified and characterized MEDI4736, a human IgG1 monoclonal antibody that binds with high affinity and specificity to PD-L1 and is uniquely engineered to prevent antibody-dependent cell-mediated cytotoxicity. In vitro assays demonstrate that MEDI4736 is a potent antagonist of PD-L1 function, blocking interaction with PD-1 and CD80 to overcome inhibition of primary human T-cell activation. In vivo MEDI4736 significantly inhibits the growth of human tumors in a novel xenograft model containing coimplanted human T cells. This activity is entirely dependent on the presence of transplanted T cells, supporting the immunological mechanism of action for MEDI4736. To further determine the utility of PD-L1 blockade, an anti-mouse PD-L1 antibody was investigated in immunocompetent mice. Here, anti-mouse PD-L1 significantly improved survival of mice implanted with CT26 colorectal cancer cells. The antitumor activity of anti-PD-L1 was enhanced by combination with oxaliplatin, which resulted in increased release of HMGB1 within CT26 tumors. Taken together, our results demonstrate that inhibition of PD-L1 function can have potent antitumor activity when used as monotherapy or in combination in preclinical models, and suggest it may be a promising therapeutic approach for the treatment of cancer. MEDI4736 is currently in several clinical trials both alone and in combination with other agents, including anti-CTLA-4, anti-PD-1, and inhibitors of IDO, MEK, BRAF, and EGFR.
Asunto(s)
Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/administración & dosificación , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Unión Competitiva , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Femenino , Humanos , Activación de Linfocitos/efectos de los fármacos , Prueba de Cultivo Mixto de Linfocitos , Melanoma/inmunología , Melanoma/patología , Melanoma/prevención & control , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Compuestos Organoplatinos/administración & dosificación , Oxaliplatino , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/prevención & control , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
INTRODUCTION: Podocalyxin (gene name PODXL) is a CD34-related sialomucin implicated in the regulation of cell adhesion, migration and polarity. Upregulated expression of podocalyxin is linked to poor patient survival in epithelial cancers. However, it is not known if podocalyxin has a functional role in tumor progression. METHODS: We silenced podocalyxin expression in the aggressive basal-like human (MDA-MB-231) and mouse (4T1) breast cancer cell lines and also overexpressed podocalyxin in the more benign human breast cancer cell line, MCF7. We evaluated how podocalyxin affects tumorsphere formation in vitro and compared the ability of podocalyxin-deficient and podocalyxin-replete cell lines to form tumors and metastasize using xenogenic or syngeneic transplant models in mice. Finally, in an effort to develop therapeutic treatments for systemic cancers, we generated a series of antihuman podocalyxin antibodies and screened these for their ability to inhibit tumor progression in xenografted mice. RESULTS: Although deletion of podocalyxin does not alter gross cell morphology and growth under standard (adherent) culture conditions, expression of PODXL is required for efficient formation of tumorspheres in vitro. Correspondingly, silencing podocalyxin resulted in attenuated primary tumor growth and invasiveness in mice and severely impaired the formation of distant metastases. Likewise, in competitive tumor engraftment assays where we injected a 50:50 mixture of control and shPODXL (short-hairpin RNA targeting PODXL)-expressing cells, we found that podocalyxin-deficient cells exhibited a striking decrease in the ability to form clonal tumors in the lung, liver and bone marrow. Finally, to validate podocalyxin as a viable target for immunotherapy, we screened a series of novel antihuman podocalyxin antibodies for their ability to inhibit tumor progression in vivo. One of these antibodies, PODOC1, potently blocked tumor growth and metastasis. CONCLUSIONS: We show that podocalyxin plays a key role in the formation of primary tumors and distant tumor metastasis. In addition, we validate podocalyxin as potential target for monoclonal antibody therapy to inhibit primary tumor growth and systemic dissemination.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Sialoglicoproteínas/antagonistas & inhibidores , Sialoglicoproteínas/metabolismo , Animales , Anticuerpos Monoclonales/administración & dosificación , Antineoplásicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Mamarias Animales , Ratones , Metástasis de la Neoplasia , Interferencia de ARN , ARN Interferente Pequeño/genética , Sialoglicoproteínas/genética , Esferoides Celulares , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
High-throughput transcriptome sequencing allows identification of cancer-related changes that occur at the stages of transcription, pre-messenger RNA (mRNA), and splicing. In the current study, we devised a pipeline to predict novel alternative splicing (AS) variants from high-throughput transcriptome sequencing data and applied it to large sets of tumor transcriptomes from The Cancer Genome Atlas (TCGA). We identified two novel tumor-associated splice variants of matriptase, a known cancer-associated gene, in the transcriptome data from epithelial-derived tumors but not normal tissue. Most notably, these variants were found in 69% of lung squamous cell carcinoma (LUSC) samples studied. We confirmed the expression of matriptase AS transcripts using quantitative reverse transcription PCR (qRT-PCR) in an orthogonal panel of tumor tissues and cell lines. Furthermore, flow cytometric analysis confirmed surface expression of matriptase splice variants in chinese hamster ovary (CHO) cells transiently transfected with cDNA encoding the novel transcripts. Our findings further implicate matriptase in contributing to oncogenic processes and suggest potential novel therapeutic uses for matriptase splice variants.
RESUMEN
Trop2 is a cell-surface glycoprotein reported to be overexpressed in various types of adenocarcinomas with minimal expression in normal tissues. Recent findings that Trop2 expression correlates with tumor aggressiveness have increased interest in Trop2 as a potential target for cancer immunotherapy. The goal of this study was to extensively evaluate Trop2 expression at the transcript and protein levels in normal and tumor tissues. It was determined that Trop2 is overexpressed on some carcinomas relative to the corresponding normal tissue. However, in human and mouse, Trop2 is highly expressed at both the transcript and protein levels on several essential normal tissues. The findings suggest that the development of therapeutic agents to target Trop2 may require strategies that target Trop2 on malignant tissues in order to minimize potential toxicities to essential normal tissues that also express high levels of Trop2.
Asunto(s)
Antígenos de Neoplasias/metabolismo , Moléculas de Adhesión Celular/metabolismo , Glicoproteínas/metabolismo , Neoplasias/metabolismo , Proteínas/metabolismo , Animales , Línea Celular , Humanos , Ratones , Especificidad de ÓrganosRESUMEN
SARS-CoV causes an acute infection making targeted passive immunotherapy an attractive treatment strategy. We previously generated human mAbs specific to the S1 region of SARS-CoV S protein. These mAbs bind epitopes within the receptor binding domain (RBD) or upstream of the RBD. We show that mAbs recognizing epitopes within the RBD inhibit infection by preventing viral attachment to the cellular receptor. One mAb binds upstream of the RBD and prevents viral entry by inhibiting a post-binding event. Evaluation of several mAbs demonstrated varying ability of the mAbs to select escape mutants when used individually. However, a mixture of antibodies could effectively neutralize a range of mutant viruses. These data strongly suggest that a mixture containing antibodies recognizing distinct regions and targeting more than one step in viral entry is likely to be more effective in neutralizing the virus and suppressing the generation of escape mutants, and thus potentially constitute a highly effective passive immunotherapy.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Antivirales/farmacología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Acoplamiento Viral , Internalización del Virus , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Antivirales/farmacología , Chlorocebus aethiops , Humanos , Concentración 50 Inhibidora , Mutación , Pruebas de Neutralización , Células VeroRESUMEN
A simple method that allows affinity measurements of antibodies to integral membrane proteins is described. Kinetic Exclusion Assay was used to determine the concentration of free antibody that remains in solution after equilibrium has been established between the antibody and the cell-surface-expressed antigen, from which the equilibrium dissociation constant (Kd) was determined. It eliminates the requirement for soluble antigen and modifications such as radio-labeling or fluorescent labeling of the antibody. For one of the cell-surface-expressed antigens, it was determined that the affinity of the antibody to the cell-surface-expressed antigen was similar to that of the purified, soluble form of the antigen. In addition to the simplicity of the approach, the method provides a true measure of the affinity/avidity of the antibody to the native form of cell-surface-expressed targets, including antigens that cannot be produced in soluble forms, and to unknown cell surface antigens.
Asunto(s)
Anticuerpos/inmunología , Antígenos/inmunología , Animales , Reacciones Antígeno-Anticuerpo , Células CHO , Línea Celular , Cricetinae , Cricetulus , HumanosRESUMEN
Passive therapy with neutralizing human monoclonal antibodies (mAbs) could be an effective therapy against severe acute respiratory syndrome coronavirus (SARS-CoV). Utilizing the human immunoglobulin transgenic mouse, XenoMouse, we produced fully human SARS-CoV spike (S) protein specific antibodies. Antibodies were examined for reactivity against a recombinant S1 protein, to which 200 antibodies reacted. Twenty-seven antibodies neutralized 200TCID(50) SARS-CoV (Urbani). Additionally, 57 neutralizing antibodies were found that are likely specific to S2. Mapping of the binding region was achieved with several S1 recombinant proteins. Most S1 reactive neutralizing mAbs bound to the RBD, aa 318-510. However, two S1 specific mAbs reacted with a domain upstream of the RBD between aa 12 and 261. Immunoglobulin gene sequence analyses suggested at least 8 different binding specificities. Unique human mAbs could be used as a cocktail that would simultaneously target several neutralizing epitopes and prevent emergence of escape mutants.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/genética , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/genética , Especificidad de Anticuerpos , Hemaglutininas Virales/inmunología , Humanos , Hibridomas , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Pruebas de Neutralización , Alineación de Secuencia , Síndrome Respiratorio Agudo Grave , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral/inmunologíaRESUMEN
The high specificity and affinity of monoclonal antibodies make them attractive as therapeutic agents. In general, the affinities of antibodies reported to be high affinity are in the high picomolar to low nanomolar range and have been affinity matured in vitro. It has been proposed that there is an in vivo affinity ceiling at 100 pM and that B cells producing antibodies with affinities for antigen above the estimated ceiling would have no selective advantage in antigen-induced affinity maturation during normal immune responses. Using a transgenic mouse producing fully human antibodies, we have routinely generated antibodies with sub-nanomolar affinities, have frequently rescued antibodies with less than 10 pM affinity, and now describe the existence of an in vivo generated anti-hIL-8 antibody with a sub-picomolar equilibrium dissociation constant. This confirms the prediction that antibodies with affinities beyond the proposed affinity ceiling can be generated in vivo. We also describe the technical challenges of determining such high affinities. To further understand the importance of affinity for therapy, we have constructed a mathematical model to predict the relationship between the affinity of an antibody and its in vivo potency using IL-8 as a model antigen.
Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Complejo Antígeno-Anticuerpo/química , Complejo Antígeno-Anticuerpo/inmunología , Inmunoensayo/métodos , Interleucina-8/química , Interleucina-8/inmunología , Microquímica/métodos , Anticuerpos Monoclonales/análisis , Complejo Antígeno-Anticuerpo/análisis , Estudios de Factibilidad , Humanos , Interleucina-8/análisis , Unión ProteicaRESUMEN
Most primates, including humans, are chronically infected with cospecifically evolved, potentially pathogenic CMV. Abs that bind a 10-aa linear epitope (antigenic determinant 2 site 1) within the extracellular domain of human CMV glycoprotein B neutralize viral infectivity. In this study, we show that genes generated by recombinations involving two well-conserved human germline V elements (IGHV3-30 and IGKV3-11), and IGHJ4, encode primary Ig molecules that bind glycoprotein B at this key epitope. These particular V(H), J(H), and V(kappa) genes enable humans to generate through recombination and N nucleotide addition, a useful frequency of primary Igs that efficiently target this critical site on human CMV and thus confer an innate foundation for a specific adaptive response to this pathogen.