Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240745

RESUMEN

Many postdoctoral fellows and scholars who hope to secure tenure-track faculty positions in the United States apply to the National Institutes of Health (NIH) for a Pathway to Independence Award. This award has two phases (K99 and R00) and provides funding for up to 5 years. Using NIH data for the period 2006-2022, we report that ~230 K99 awards were made every year, representing up to ~$250 million annual investment. About 40% of K99 awardees were women and ~89% of K99 awardees went on to receive an R00 award annually. Institutions with the most NIH funding produced the most recipients of K99 awards and recruited the most recipients of R00 awards. The time between a researcher starting an R00 award and receiving a major NIH award (such as an R01) ranged between 4.6 and 7.4 years, and was significantly longer for women, for those who remained at their home institution, and for those hired by an institution that was not one of the 25 institutions with the most NIH funding. Shockingly, there has yet to be a K99 awardee at a historically Black college or university. We go on to show how K99 awardees flow to faculty positions, and to identify various factors that influence the future success of individual researchers and, therefore, also influence the composition of biomedical faculty at universities in the United States.


Asunto(s)
Distinciones y Premios , Investigación Biomédica , Humanos , Femenino , Estados Unidos , Masculino , National Institutes of Health (U.S.) , Personal de Salud , Investigadores
2.
Mol Microbiol ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37712143

RESUMEN

Drugs intended to target mammalian cells can have broad off-target effects on the human gut microbiota with potential downstream consequences for drug efficacy and side effect profiles. Yet, despite a rich literature on antibiotic resistance, we still know very little about the mechanisms through which commensal bacteria evade non-antibiotic drugs. Here, we focus on statins, one of the most prescribed drug types in the world and an essential tool in the prevention and treatment of high circulating cholesterol levels. Prior work in humans, mice, and cell culture support an off-target effect of statins on human gut bacteria; however, the genetic determinants of statin sensitivity remain unknown. We confirmed that simvastatin inhibits the growth of diverse human gut bacterial strains grown in communities and in pure cultures. Drug sensitivity varied between phyla and was dose-dependent. We selected two representative simvastatin-sensitive species for more in-depth analysis: Eggerthella lenta (phylum: Actinobacteriota) and Bacteroides thetaiotaomicron (phylum: Bacteroidota). Transcriptomics revealed that both bacterial species upregulate genes in response to simvastatin that alter the cell membrane, including fatty acid biogenesis (E. lenta) and drug efflux systems (B. thetaiotaomicron). Transposon mutagenesis identified a key efflux system in B. thetaiotaomicron that enables growth in the presence of statins. Taken together, these results emphasize the importance of the bacterial cell membrane in countering the off-target effects of host-targeted drugs. Continued mechanistic dissection of the various mechanisms through which the human gut microbiota evades drugs will be essential to understand and predict the effects of drug administration in human cohorts and the potential downstream consequences for health and disease.

3.
bioRxiv ; 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-37162873

RESUMEN

Many postdoctoral fellows and scholars who hope to secure tenure-track faculty positions in the United States apply to the National Institutes of Health (NIH) for a Pathway to Independence Award. This award has two phases (K99 and R00) and provides funding for up to five years. Using NIH data for the period 2006-2022, we report that ~230 K99 awards were made every year, representing up to ~$250 million annual investment. About 40% of K99 awardees were women and ~89% of K99 awardees went on to receive an R00 award annually. Institutions with the most NIH funding produced the most recipients of K99 awards and recruited the most recipients of R00 awards. The time between a researcher starting an R00 award and receiving a major NIH award (such as an R01) ranged between 4.6 and 7.4 years, and was significantly longer for women, for those who remained at their home institution, and for those hired by an institution that was not one of the 25 institutions with the most NIH funding. Shockingly, there has yet to be a K99 awardee at a historically Black college or university. We go on to show how K99 awardees flow to faculty positions, and to identify various factors that influence the future success of individual researchers and, therefore, also influence the composition of biomedical faculty at universities in the US.

4.
iScience ; 25(6): 104353, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35874918

RESUMEN

Targeting immune checkpoints, such as Programmed cell Death 1 (PD1), has improved survival in cancer patients by restoring antitumor immune responses. Most patients, however, relapse or are refractory to immune checkpoint blocking therapies. Neuropilin-1 (NRP1) is a transmembrane glycoprotein required for nervous system and angiogenesis embryonic development, also expressed in immune cells. We hypothesized that NRP1 could be an immune checkpoint co-receptor modulating CD8+ T cells activity in the context of the antitumor immune response. Here, we show that NRP1 is recruited in the cytolytic synapse of PD1+CD8+ T cells, cooperates and enhances PD-1 activity. In mice, CD8+ T cells specific deletion of Nrp1 improves anti-PD1 antibody antitumor immune responses. Likewise, in human metastatic melanoma, the expression of NRP1 in tumor infiltrating CD8+ T cells predicts poor outcome of patients treated with anti-PD1. NRP1 is a promising target to overcome resistance to anti-PD1 therapies.

5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35181606

RESUMEN

Cytomegalovirus (CMV) infection is associated with graft rejection in renal transplantation. Memory-like natural killer (NK) cells expressing NKG2C and lacking FcεRIγ are established during CMV infection. Additionally, CD8+ T cells expressing NKG2C have been observed in some CMV-seropositive patients. However, in vivo kinetics detailing the development and differentiation of these lymphocyte subsets during CMV infection remain limited. Here, we interrogated the in vivo kinetics of lymphocytes in CMV-infected renal transplant patients using longitudinal samples compared with those of nonviremic (NV) patients. Recipient CMV-seropositive (R+) patients had preexisting memory-like NK cells (NKG2C+CD57+FcεRIγ-) at baseline, which decreased in the periphery immediately after transplantation in both viremic and NV patients. We identified a subset of prememory-like NK cells (NKG2C+CD57+FcεRIγlow-dim) that increased during viremia in R+ viremic patients. These cells showed a higher cytotoxic profile than preexisting memory-like NK cells with transient up-regulation of FcεRIγ and Ki67 expression at the acute phase, with the subsequent accumulation of new memory-like NK cells at later phases of viremia. Furthermore, cytotoxic NKG2C+CD8+ T cells and γδ T cells significantly increased in viremic patients but not in NV patients. These three different cytotoxic cells combinatorially responded to viremia, showing a relatively early response in R+ viremic patients compared with recipient CMV-seronegative viremic patients. All viremic patients, except one, overcame viremia and did not experience graft rejection. These data provide insights into the in vivo dynamics and interplay of cytotoxic lymphocytes responding to CMV viremia, which are potentially linked with control of CMV viremia to prevent graft rejection.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citometría de Flujo/métodos , Células Asesinas Naturales/metabolismo , Adulto , Linfocitos T CD8-positivos/metabolismo , Separación Celular/métodos , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/virología , Femenino , Rechazo de Injerto/inmunología , Humanos , Trasplante de Riñón/efectos adversos , Trasplante de Riñón/métodos , Células Asesinas Naturales/inmunología , Cinética , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Análisis de la Célula Individual/métodos , Viremia/inmunología , Viremia/virología
7.
J Immunol ; 207(8): 1941-1947, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34607907

RESUMEN

Our organization, Black in Immuno (@BlackInImmuno), was formed in September 2020 to celebrate, support, and amplify Black voices in immunology when social media campaigns like #BlackInTheIvory illuminated the shared overt and covert issues of systemic racism faced by Black researchers in all facets of science, technology, engineering, art, and mathematics. Black in Immuno was cofounded by a group of Black immunology trainees working at multiple institutions globally: Joël Babdor, E. Evonne Jean, Elaine Kouame, Alexis S. Mobley, Justine C. Noel, and Madina Wane. We devised Black in Immuno Week, held November 22-28, 2020, as a global celebration of Black immunologists. The week was designed to advocate for increased diversity and accessibility in immunology, amplify Black excellence in immunology, and create a community of Black immunologists who can support each other to flourish despite barriers in academia and other job sectors. The week contained live panels and scientific talks, a casual networking mixer, online advocacy and amplification sessions, and a series of wellness events. Our live-streamed programs reached over 300 individuals, and thousands of people kept the conversations going globally using #BlackInImmuno and #BlackInImmunoWeek on social media from five continents. Below, we highlight the events and significant takeaways of the week.


Asunto(s)
Alergia e Inmunología/ética , Población Negra , Sistemas en Línea , Investigadores , Éxito Académico , Alergia e Inmunología/educación , Defensa del Consumidor , Humanos , Redes Sociales en Línea , Racismo , Inclusión Social , Estados Unidos , Difusión por la Web como Asunto
8.
Cell Rep ; 28(3): 819-831.e4, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315057

RESUMEN

The success of immunotherapy has led to a myriad of clinical trials accompanied by efforts to gain mechanistic insight and identify predictive signatures for personalization. However, many immune monitoring technologies face investigator bias, missing unanticipated cellular responses in limited clinical material. We present here a mass cytometry (CyTOF) workflow for standardized, systems-level biomarker discovery in immunotherapy trials. To broadly enumerate immune cell identity and activity, we established and extensively assessed a reference panel of 33 antibodies to cover major cell subsets, simultaneously quantifying activation and immune checkpoint molecules in a single assay. This assay enumerates ≥98% of peripheral immune cells with ≥4 positively identifying antigens. Robustness and reproducibility are demonstrated on multiple samples types, across two research centers and by orthogonal measurements. Using automated analysis, we identify stratifying immune signatures in bone marrow transplantation-associated graft-versus-host disease. Together, this validated workflow ensures comprehensive immunophenotypic analysis and data comparability and will accelerate biomarker discovery.


Asunto(s)
Ensayos Clínicos como Asunto , Inmunofenotipificación/métodos , Inmunoterapia/métodos , Monitorización Inmunológica/métodos , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/análisis , Femenino , Enfermedad Injerto contra Huésped/inmunología , Humanos , Inmunofenotipificación/normas , Masculino , Persona de Mediana Edad , Monitorización Inmunológica/normas , Neoplasias/inmunología , Neoplasias/terapia , Estándares de Referencia
9.
Oncoimmunology ; 7(11): e1470735, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30377560

RESUMEN

Despite increasing evidence for a protective role of invariant (i) NKT cells in the control of graft-versus-host disease (GVHD), the mechanisms underpinning regulation of the allogeneic immune response in humans are not known. In this study, we evaluated the distinct effects of human in vitro expanded and flow-sorted human CD4+ and CD4- iNKT subsets on human T cell activation in a pre-clinical humanized NSG mouse model of xenogeneic GVHD. We demonstrate that human CD4- but not CD4+ iNKT cells could control xenogeneic GVHD, allowing significantly prolonged overall survival and reduced pathological GVHD scores without impairing human T cell engraftment. Human CD4- iNKT cells reduced the activation of human T cells and their Th1 and Th17 differentiation in vivo. CD4- and CD4+ iNKT cells had distinct effects upon DC maturation and survival. Compared to their CD4+ counterparts, in co-culture experiments in vitro, human CD4- iNKT cells had a higher ability to make contacts and degranulate in the presence of mouse bone marrow-derived DCs, inducing their apoptosis. In vivo we observed that infusion of PBMC and CD4- iNKT cells was associated with decreased numbers of splenic mouse CD11c+ DCs. Similar differential effects of the iNKT cell subsets were observed on the maturation and in the induction of apoptosis of human monocyte-derived dendritic cells in vitro. These results highlight the increased immunosuppressive functions of CD4-versus CD4+ human iNKT cells in the context of alloreactivity, and provide a rationale for CD4- iNKT selective expansion or transfer to prevent GVHD in clinical trials.

10.
Cell Rep ; 24(13): 3568-3581, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30257216

RESUMEN

Both cross-presentation of antigens by dendritic cells, a key pathway triggering T cell immunity and immune tolerance, and survival of several pathogens residing in intracellular vacuoles are intimately linked to delayed maturation of vesicles containing internalized antigens and microbes. However, how early endosome or phagosome identity is maintained is incompletely understood. We show that Toll-like receptor 4 (TLR4) and Fc receptor ligation induces interaction of the GTPase Rab14 with the kinesin KIF16b mediating plus-end-directed microtubule transport of endosomes. As a result, Rab14 recruitment to phagosomes delays their maturation and killing of an internalized pathogen. Enhancing anterograde transport by overexpressing Rab14, promoting the GTP-bound Rab14 state, or inhibiting retrograde transport upregulates cross-presentation. Conversely, reducing Rab14 expression, destabilizing Rab14 endosomes, and inhibiting anterograde microtubule transport by Kif16b knockdown compromise cross-presentation. Therefore, regulation of early endosome trafficking by innate immune signals is a critical parameter in cross-presentation by dendritic cells.


Asunto(s)
Reactividad Cruzada , Endosomas/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Inmunidad Innata , Animales , Células Cultivadas , Femenino , Cinesinas/metabolismo , Masculino , Ratones , Microtúbulos/metabolismo , Fagosomas/inmunología , Transporte de Proteínas , Receptores Fc/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas de Unión al GTP rab/metabolismo
11.
Am J Hum Genet ; 102(2): 266-277, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395073

RESUMEN

Neurodegeneration with brain iron accumulation (NBIA) is a genetically heterogeneous condition characterized by progressive dystonia with iron accumulation in the basal ganglia. How NBIA-associated mutations trigger iron overload remains poorly understood. After studying fibroblast cell lines from subjects carrying both known and unreported biallelic mutations in CRAT and REPS1, we ascribe iron overload to the abnormal recycling of transferrin receptor (TfR1) and the reduction of TfR1 palmitoylation in NBIA. Moreover, we describe palmitoylation as a hitherto unreported level of post-translational TfR1 regulation. A widely used antimalarial agent, artesunate, rescued abnormal TfR1 palmitoylation in cultured fibroblasts of NBIA subjects. These observations suggest therapeutic strategies aimed at targeting impaired TfR1 recycling and palmitoylation in NBIA.


Asunto(s)
Encéfalo/patología , Endocitosis , Hierro/metabolismo , Lipoilación , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Receptores de Transferrina/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al Calcio , Proteínas Portadoras/genética , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , Mutación/genética , Receptores de Transferrina/química , Receptores de Transferrina/genética , Transferrina/metabolismo
12.
Nat Immunol ; 18(5): 509-518, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28319098

RESUMEN

The retention of intracellular Toll-like receptors (TLRs) in the endoplasmic reticulum prevents their activation under basal conditions. TLR9 is activated by sensing ligands in specific endosomal-lysosomal compartments. Here we identified IRAP+ endosomes as major cellular compartments for the early steps of TLR9 activation in dendritic cells (DCs). Both TLR9 and its ligand, the dinucleotide CpG, were present as cargo in IRAP+ endosomes. In the absence of the aminopeptidase IRAP, the trafficking of CpG and TLR9 to lysosomes and signaling via TLR9 were enhanced in DCs and in mice following bacterial infection. IRAP stabilized CpG-containing endosomes by interacting with the actin-nucleation factor FHOD4, which slowed the trafficking of TLR9 toward lysosomes. Thus, endosomal retention of TLR9 via the interaction of IRAP with the actin cytoskeleton is a mechanism that prevents hyper-activation of TLR9 in DCs.


Asunto(s)
Cistinil Aminopeptidasa/metabolismo , Citoesqueleto/metabolismo , Células Dendríticas/fisiología , Endosomas/metabolismo , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Receptor Toll-Like 9/metabolismo , Animales , Células Cultivadas , Islas de CpG/genética , Cistinil Aminopeptidasa/genética , Células Dendríticas/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Oligodesoxirribonucleótidos/inmunología , Unión Proteica , Transducción de Señal
13.
J Neuroinflammation ; 13(1): 177, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27400786

RESUMEN

BACKGROUND: In the SOD1(G93A) mutant rat model of amyotrophic lateral sclerosis (ALS), neuronal death and rapid paralysis progression are associated with the emergence of activated aberrant glial cells that proliferate in the degenerating spinal cord. Whether pharmacological downregulation of such aberrant glial cells will decrease motor neuron death and prolong survival is unknown. We hypothesized that proliferation of aberrant glial cells is dependent on kinase receptor activation, and therefore, the tyrosine kinase inhibitor masitinib (AB1010) could potentially control neuroinflammation in the rat model of ALS. METHODS: The cellular effects of pharmacological inhibition of tyrosine kinases with masitinib were analyzed in cell cultures of microglia isolated from aged symptomatic SOD1(G93A) rats. To determine whether masitinib prevented the appearance of aberrant glial cells or modified post-paralysis survival, the drug was orally administered at 30 mg/kg/day starting after paralysis onset. RESULTS: We found that masitinib selectively inhibited the tyrosine kinase receptor colony-stimulating factor 1R (CSF-1R) at nanomolar concentrations. In microglia cultures from symptomatic SOD1(G93A) spinal cords, masitinib prevented CSF-induced proliferation, cell migration, and the expression of inflammatory mediators. Oral administration of masitinib to SOD1(G93A) rats starting after paralysis onset decreased the number of aberrant glial cells, microgliosis, and motor neuron pathology in the degenerating spinal cord, relative to vehicle-treated rats. Masitinib treatment initiated 7 days after paralysis onset prolonged post-paralysis survival by 40 %. CONCLUSIONS: These data show that masitinib is capable of controlling microgliosis and the emergence/expansion of aberrant glial cells, thus providing a strong biological rationale for its use to control neuroinflammation in ALS. Remarkably, masitinib significantly prolonged survival when delivered after paralysis onset, an unprecedented effect in preclinical models of ALS, and therefore appears well-suited for treating ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/complicaciones , Encefalitis/tratamiento farmacológico , Encefalitis/etiología , Parálisis/tratamiento farmacológico , Parálisis/etiología , Inhibidores de Proteínas Quinasas/uso terapéutico , Tiazoles/uso terapéutico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/mortalidad , Animales , Benzamidas , Muerte Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Masculino , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Mutación/genética , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Piperidinas , Piridinas , Ratas , Ratas Transgénicas , Médula Espinal/patología , Superóxido Dismutasa/genética
14.
Front Immunol ; 6: 335, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26191062

RESUMEN

Cross-presentation, in which exogenous antigens are presented via MHC I complexes, is involved both in the generation of anti-infectious and anti-tumoral cytotoxic CD8(+) T cells and in the maintenance of immune tolerance. While cross-presentation was described almost four decades ago and while it is now established that some dendritic cell (DC) subsets are better than others in processing and cross-presenting internalized antigens, the involved molecular mechanisms remain only partially understood. Some of the least explored molecular mechanisms in cross-presentation concern the origin of cross-presenting MHC I molecules and the cellular compartments where antigenic peptide loading occurs. This review focuses on MHC I molecules and their intracellular trafficking. We discuss the source of cross-presenting MHC I in DCs as well as the role of the endocytic pathway in their recycling from the cell surface. Next, we describe the importance of the TAP peptide transporter for delivering peptides to MHC I during cross-presentation. Finally, we highlight the impact of innate immunity mechanisms on specific antigen cross-presentation mechanisms in which TLR activation modulates MHC I trafficking and TAP localization.

15.
Mol Immunol ; 55(2): 153-5, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23123036

RESUMEN

Peptide epitopes presented by MHC class I molecules are produced through sequential proteolysis, frequently terminating with an aminoterminal trimming step. While the trimming enzymes processing endogenous MHC class I ligands in the endoplasmic reticulum have by now been characterized extensively, we have only recently identified an endosomal enzyme, insulin-regulated aminopeptidase (IRAP) that can trim cross-presented peptides derived from proteins internalized by dendritic cells. Here we summarize the essential features of IRAP as a trimming enzyme, propose an updated model of cellular cross-presentation pathways, and discuss potential additional functions of IRAP and its compartment in dendritic cell biology.


Asunto(s)
Reactividad Cruzada , Cistinil Aminopeptidasa/metabolismo , Células Dendríticas , Presentación de Antígeno/inmunología , Células Dendríticas/enzimología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/inmunología , Endosomas/enzimología , Endosomas/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...