Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 10(6): e0248922, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36377885

RESUMEN

The absence of Isc1, the yeast homologue of mammalian neutral sphingomyelinase type 2, leads to severe mitochondrial dysfunction. We show that the deletion of another type C phospholipase, the phosphatidylglycerol (PG)-specific phospholipase Pgc1, rescues this defect. Phosphatidylethanolamine (PE) levels and cytochrome c oxidase activity, which were reduced in isc1Δ cells, were restored to wild-type levels in the pgc1Δ isc1Δ mutant. The Pgc1 substrate PG inhibited the in vitro activities of Isc1 and the phosphatidylserine decarboxylase Psd1, an enzyme crucial for PE biosynthesis. We also identify a mechanism by which the balance between the current demand for PG and its consumption is controlled. We document that the product of PG hydrolysis, diacylglycerol, competes with the substrate of PG-phosphate synthase, Pgs1, and thereby inhibits the biosynthesis of excess PG. This feedback loop does not work in the absence of Pgc1, which catalyzes PG degradation. Finally, Pgc1 activity is partially inhibited by products of Isc1-mediated hydrolysis. The described functional interconnection of the two phospholipases contributes significantly to lipid homeostasis throughout the cellular architecture. IMPORTANCE In eukaryotic cells, mitochondria are constantly adapting to changes in the biological activity of the cell, i.e., changes in nutrient availability and environmental stresses. We propose a model in which this adaptation is mediated by lipids. Specifically, we show that mitochondrial phospholipids regulate the biosynthesis of cellular sphingolipids and vice versa. To do this, lipids move by free diffusion, which does not require energy and works under any condition. This model represents a simple way for the cell to coordinate mitochondrial structure and performance with the actual needs of overall cellular metabolism. Its simplicity makes it a universally applicable principle of cellular regulation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Fosfolipasas de Tipo C , Mitocondrias/metabolismo , Fosfatidilgliceroles/metabolismo , Fosfolipasas/química , Fosfolipasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfolipasas de Tipo C/metabolismo
2.
J Biol Chem ; 298(1): 101462, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864056

RESUMEN

Barth syndrome (BTHS) is an inherited mitochondrial disorder characterized by a decrease in total cardiolipin and the accumulation of its precursor monolysocardiolipin due to the loss of the transacylase enzyme tafazzin. However, the molecular basis of BTHS pathology is still not well understood. Here we characterize the double mutant pgc1Δtaz1Δ of Saccharomyces cerevisiae deficient in phosphatidylglycerol-specific phospholipase C and tafazzin as a new yeast model of BTHS. Unlike the taz1Δ mutant used to date, this model accumulates phosphatidylglycerol, thus better approximating the human BTHS cells. We demonstrate that increased phosphatidylglycerol in this strain leads to more pronounced mitochondrial respiratory defects and an increased incidence of aberrant mitochondria compared to the single taz1Δ mutant. We also show that the mitochondria of the pgc1Δtaz1Δ mutant exhibit a reduced rate of respiration due to decreased cytochrome c oxidase and ATP synthase activities. Finally, we determined that the mood-stabilizing anticonvulsant valproic acid has a positive effect on both lipid composition and mitochondrial function in these yeast BTHS models. Overall, our results show that the pgc1Δtaz1Δ mutant better mimics the cellular phenotype of BTHS patients than taz1Δ cells, both in terms of lipid composition and the degree of disruption of mitochondrial structure and function. This favors the new model for use in future studies.


Asunto(s)
Síndrome de Barth , Cardiolipinas , Fosfatidilgliceroles , Aciltransferasas/metabolismo , Síndrome de Barth/metabolismo , Cardiolipinas/genética , Cardiolipinas/metabolismo , Humanos , Fenotipo , Fosfatidilgliceroles/antagonistas & inhibidores , Fosfatidilgliceroles/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA