RESUMEN
Anthropogenic releases of mercury (Hg)1-3 are a human health issue4 because the potent toxicant methylmercury (MeHg), formed primarily by microbial methylation of inorganic Hg in aquatic ecosystems, bioaccumulates to high concentrations in fish consumed by humans5,6. Predicting the efficacy of Hg pollution controls on fish MeHg concentrations is complex because many factors influence the production and bioaccumulation of MeHg7-9. Here we conducted a 15-year whole-ecosystem, single-factor experiment to determine the magnitude and timing of reductions in fish MeHg concentrations following reductions in Hg additions to a boreal lake and its watershed. During the seven-year addition phase, we applied enriched Hg isotopes to increase local Hg wet deposition rates fivefold. The Hg isotopes became increasingly incorporated into the food web as MeHg, predominantly from additions to the lake because most of those in the watershed remained there. Thereafter, isotopic additions were stopped, resulting in an approximately 100% reduction in Hg loading to the lake. The concentration of labelled MeHg quickly decreased by up to 91% in lower trophic level organisms, initiating rapid decreases of 38-76% of MeHg concentration in large-bodied fish populations in eight years. Although Hg loading from watersheds may not decline in step with lowering deposition rates, this experiment clearly demonstrates that any reduction in Hg loadings to lakes, whether from direct deposition or runoff, will have immediate benefits to fish consumers.
Asunto(s)
Monitoreo del Ambiente , Restauración y Remediación Ambiental , Peces/metabolismo , Cadena Alimentaria , Lagos/química , Intoxicación por Mercurio/veterinaria , Mercurio/análisis , Animales , Isótopos/análisis , Factores de TiempoRESUMEN
Past industrial use and subsequent release of mercury (Hg) into the environment have resulted in severe cases of legacy contamination that still influence contemporary Hg levels in biota. While the bioaccumulation of legacy Hg is commonly assessed via concentration measurements within fish tissue, this practice becomes difficult in regions of high productivity and methylmercury (MeHg) production, like the Mobile River Basin, Alabama in the southeastern United States. This study applied Hg stable isotope tracers to distinguish legacy Hg from regional deposition sources in sediments, waters, and fish within the Mobile River. Sediments and waters displayed differences in δ202Hg between industrial and background sites, which corresponded to drastic differences in Hg concentration. Sites that were affected by legacy Hg, as defined by δ202Hg, produced largemouth bass with lower MeHg content (59-70%) than those captured in the main rivers (>85%). Direct measurements of Hg isotopes and mathematical estimates of MeHg isotope pools in fish displayed similar distinctions between legacy and watershed sources as observed in other matrices. These results indicate that legacy Hg can accumulate directly into fish tissue as the inorganic species and may also be available for methylation within contaminated zones decades after the initial release.
Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Bioacumulación , Monitoreo del Ambiente , Peces , Sedimentos Geológicos , Mercurio/análisis , Ríos , Contaminantes Químicos del Agua/análisisRESUMEN
The development of mercury (Hg) stable isotope measurements has enhanced the study of Hg sources and transformations in the environment. As a result of the mixing of inorganic Hg (iHg) and methylmercury (MeHg) species within organisms of the aquatic food web, understanding species-specific Hg stable isotopic compositions is of significant importance. The lack of MeHg isotope measurements is due to the analytical difficulty in the separation of the MeHg from the total Hg pool, with only a few methods having been tested over the past decade with varying degrees of success, and only a handful of environmentally relevant measurements. Here, we present a novel anion-exchange resin separation method using AG 1-X4 that further isolates MeHg from the sample matrix, following a distillation pretreatment, in order to obtain ambient MeHg stable isotopic compositions. This method avoids the use of organic reagents, does not require complex instrumentation, and is applicable across matrices. Separation tests across sediment, water, and biotic matrices showed acceptable recoveries (98 ± 5%, n = 54) and reproducible δ202Hg isotope results (2 SDs ≤ 0.15) down to 5 ng of MeHg. The measured MeHg pools in natural matrices, such as plankton and sediments, showed large deviations from the non-speciated total Hg measurement, indicating that there is an important isotopic shift during methylation that is not recorded by typical measurements, but is vital in order to assess sources of Hg during bioaccumulation. Graphical abstract.
Asunto(s)
Cromatografía por Intercambio Iónico/métodos , Monitoreo del Ambiente/métodos , Compuestos de Metilmercurio/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Animales , Peces/metabolismo , Cadena Alimentaria , Sedimentos Geológicos/análisis , Límite de Detección , Isótopos de Mercurio/análisis , Isótopos de Mercurio/aislamiento & purificación , Compuestos de Metilmercurio/análisis , Plancton/química , Contaminantes Químicos del Agua/análisisRESUMEN
To understand the impact reduced mercury (Hg) loading and invasive species have had on methylmercury bioaccumulation in predator fish of Lake Michigan, we reconstructed bioaccumulation trends from a fish archive (1978 to 2012). By measuring fish Hg stable isotope ratios, we related temporal changes in Hg concentrations to varying Hg sources. Additionally, dietary tracers were necessary to identify food web influences. Through combined Hg, C, and N stable isotopic analyses, we were able to differentiate between a shift in Hg sources to fish and periods when energetic transitions (from dreissenid mussels) led to the assimilation of contrasting Hg pools (2000 to present). In the late 1980s, lake trout δ202Hg increased (0.4) from regulatory reductions in regional Hg emissions. After 2000, C and N isotopes ratios revealed altered food web pathways, resulting in a benthic energetic shift and changes to Hg bioaccumulation. Continued increases in δ202Hg indicate fish are responding to several United States mercury emission mitigation strategies that were initiated circa 1990 and continued through the 2011 promulgation of the Mercury and Air Toxics Standards rule. Unlike archives of sediments, this fish archive tracks Hg sources susceptible to bioaccumulation in Great Lakes fisheries. Analysis reveals that trends in fish Hg concentrations can be substantially affected by shifts in trophic structure and dietary preferences initiated by invasive species in the Great Lakes. This does not diminish the benefits of declining emissions over this period, as fish Hg concentrations would have been higher without these actions.
Asunto(s)
Cadena Alimentaria , Compuestos de Metilmercurio/análisis , Trucha/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/legislación & jurisprudencia , Anfípodos/química , Animales , Dieta , Dreissena/química , Política Ambiental , Agua Dulce/química , Sedimentos Geológicos/química , Especies Introducidas , Lagos , Isótopos de Mercurio/análisis , Michigan , Conducta Predatoria , Factores de Tiempo , Trucha/fisiologíaRESUMEN
We measured mercury methylation potentials and a suite of related biogeochemical parameters in sediment cores and porewater from two geochemically distinct sites in the Allequash Creek wetland, northern Wisconsin, USA. We found a high degree of spatial variability in the methylation rate potentials but no significant differences between the two sites. We identified the primary geochemical factors controlling net methylmercury production at this site to be acid-volatile sulfide, dissolved organic carbon, total dissolved iron, and porewater iron(II). Season and demethylation rates also appear to regulate net methylmercury production. Our equilibrium speciation modeling demonstrated that sulfide likely regulated methylation rates by controlling the speciation of inorganic mercury and therefore its bioavailability to methylating bacteria. We found that no individual geochemical parameter could explain a significant amount of the observed variability in mercury methylation rates, but we found significant multivariate relationships, supporting the widely held understanding that net methylmercury production is balance of several simultaneously occurring processes.
Asunto(s)
Mercurio/química , Metilación , Compuestos de Metilmercurio , Contaminantes Químicos del Agua/química , Sedimentos Geológicos , HumedalesRESUMEN
The aging of "new" mercury (Hg) was investigated in Experimental Lake 658 as part of the Mercury Experiment To Assess Atmospheric Loading In Canada and the United States (METAALICUS). Mercury enriched in (202)Hg was added to the epilimnion over a three-year period to simulate direct atmospheric deposition. We evaluated the aging of newly added mercury (HgLake) in the water column using chemical methods and experiments to examine differences in phase partitioning and transport compared to the ambient pool, HgAmb. Aging was sufficiently slow to observe differences in the partitioning characteristics of HgLake and HgAmb. Amended HgLake initially partitioned to a greater extent to epilimnetic particulate matter (log Kd of HgLake=5.08; log Kd of HgAmb=4.9). HgLake was transported rapidly to the hypolimnion by settling particulate matter. Partitioning became more similar after amended Hg was recycled within the hypolimnion through redox processes. Experiments showed the removal of Hg from the aqueous phase by Fe and/or Mn oxyhydroxide-organic matter complexes. Separations using the anion exchange resin DEAE indicated that both HgLake and HgAmb were associated mainly with dissolved organic matter (DOM) and with partial association with sulfide in anoxic waters, but the degree of association of HgLake with DOM was higher in oxic (epilimnetic) waters. In the solid phase, chemical fractionation indicated greater association of HgLake with organic matter, while HgAmb showed greater association with oxyhydroxide and inert phases. Overall, the results suggest that "new" Hg added from the atmosphere is initially more particle-reactive than ambient Hg in the epilimnion, where initial sorption/partitioning occurs mainly to plankton and detrital particles. Once Hg has been deposited at the sediment-water interface, extended equilibration time in combination with microbial and chemical redox processes "age" the "new" Hg, and particle partitioning becomes similar for the added isotope and ambient pools.
Asunto(s)
Contaminantes Ambientales/análisis , Agua Dulce/química , Mercurio/análisis , Atmósfera/química , Monitoreo del Ambiente , Contaminantes Ambientales/química , Hierro/química , Compuestos de Manganeso/química , Mercurio/química , Oxidación-Reducción , Transición de FaseRESUMEN
Methylmercury contamination of fisheries from centuries of industrial atmospheric emissions negatively impacts humans and wildlife worldwide. The response of fish methylmercury concentrations to changes in mercury deposition has been difficult to establish because sediments/soils contain large pools of historical contamination, and many factors in addition to deposition affect fish mercury. To test directly the response of fish contamination to changing mercury deposition, we conducted a whole-ecosystem experiment, increasing the mercury load to a lake and its watershed by the addition of enriched stable mercury isotopes. The isotopes allowed us to distinguish between experimentally applied mercury and mercury already present in the ecosystem and to examine bioaccumulation of mercury deposited to different parts of the watershed. Fish methylmercury concentrations responded rapidly to changes in mercury deposition over the first 3 years of study. Essentially all of the increase in fish methylmercury concentrations came from mercury deposited directly to the lake surface. In contrast, <1% of the mercury isotope deposited to the watershed was exported to the lake. Steady state was not reached within 3 years. Lake mercury isotope concentrations were still rising in lake biota, and watershed mercury isotope exports to the lake were increasing slowly. Therefore, we predict that mercury emissions reductions will yield rapid (years) reductions in fish methylmercury concentrations and will yield concomitant reductions in risk. However, a full response will be delayed by the gradual export of mercury stored in watersheds. The rate of response will vary among lakes depending on the relative surface areas of water and watershed.
Asunto(s)
Ecosistema , Peces/metabolismo , Agua Dulce/química , Sedimentos Geológicos/química , Compuestos de Metilmercurio/análisis , Contaminación Química del Agua/análisis , Animales , Isótopos de Mercurio/análisis , Compuestos de Metilmercurio/metabolismoRESUMEN
Identification of sites of methyl mercury (MeHg) production is critical to predicting long-term fate of bioaccumulative Hg in the aquatic environment. During baseflow, when groundwater sources dominate, we observed consistently elevated levels of MeHg (0.1-0.4 ng L(-1)) at the mouth and in several tributaries to the Tahquamenon River in the Lake Superior watershed. MeHg concentrations in groundwater observation wells exceeded 0.6 ng L(-1) in a coniferous catchment with highly conductive sandy surficial deposits. Furthermore, we identified MeHg concentrations as high as 12 ng L(-1) in the hyporheic zone of East Creek, a tributary to the Tahquamenon. This study confirms the importance of groundwater as a source of MeHg in watersheds of the Great Lakes. Indirect groundwater discharge represents a major component of flow in rivers of the basin, further emphasizing the need to better understand subsurface MeHg production and transport processes when modeling watershed responses and biogeochemical fate of Hg in the Great Lakes.
Asunto(s)
Compuestos de Metilmercurio/análisis , Movimientos del Agua , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua , Carbono/análisis , Monitoreo del Ambiente , Agua Dulce , Mercurio/análisis , Estaciones del Año , ÁrbolesRESUMEN
Results from pilot studies on colloidal phase transport of newly deposited mercury in lake water and overland runoff demonstrate that the combination of ultrafiltration, and stable isotope amendment techniques is a viable tool for the study of mercury partitioning to filterable carbon. Ultrafiltration mass balance calculations were generally excellent, averaging 97.3, 96.1 and 99.8% for dissolved organic carbon (DOC), total mercury (Hg(T)), and methylmercury (MeHg), respectively. Sub nanogram per liter quantities of isotope were measurable, and the observed phase distribution from replicate ultrafiltration separations on lake water agreed within 20%. We believe the data presented here are the first published colloidal phase mercury data on lake water and overland runoff from uncontaminated sites. Initial results from pilot-scale lake amendment experiments indicate that the choice of matrix used to dissolve the isotope did not affect the initial phase distribution of the added mercury in the lake. In addition there was anecdotal evidence that native MeHg was either recently produced in the system, or at a minimum, that this 'old' MeHg partitions to the same subset of DOC that binds the amended mercury. Initial results from pilot-scale overland runoff experiments indicate that less than 20% of newly deposited mercury was transported in the filterable fraction (<0.7 microm). There is some indication of colloidal phase enrichment of mercury in runoff compared to the phase distribution of organic carbon, but the mechanism of this enrichment is unclear. The phase distribution of newly deposited mercury can differ from that of organic carbon and native mercury, suggesting that the quality of the carbon (available ligands), not the quantity of carbon, regulates partitioning. Further characterization of DOC is needed to clarify the underlying mechanisms.