Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Fluids Barriers CNS ; 21(1): 30, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566110

RESUMEN

BACKGROUND: Reduced clearance of cerebrospinal fluid (CSF) has been suggested as a pathological feature of Alzheimer's disease (AD). With extensive documentation in non-human mammals and contradictory human neuroimaging data it remains unknown whether the nasal mucosa is a CSF drainage site in humans. Here, we used dynamic PET with [1-11C]-Butanol, a highly permeable radiotracer with no appreciable brain binding, to test the hypothesis that tracer drainage from the nasal pathway reflects CSF drainage from brain. As a test of the hypothesis, we examined whether brain and nasal fluid drainage times were correlated and affected by brain amyloid. METHODS: 24 cognitively normal subjects (≥ 65 years) were dynamically PET imaged for 60 min. using [1-11C]-Butanol. Imaging with either [11C]-PiB or [18F]-FBB identified 8 amyloid PET positive (Aß+) and 16 Aß- subjects. MRI-determined regions of interest (ROI) included: the carotid artery, the lateral orbitofrontal (LOF) brain, the cribriform plate, and an All-turbinate region comprised of the superior, middle, and inferior turbinates. The bilateral temporalis muscle and jugular veins served as control regions. Regional time-activity were used to model tracer influx, egress, and AUC. RESULTS: LOF and All-turbinate 60 min AUC were positively associated, thus suggesting a connection between the brain and the nose. Further, the Aß+ subgroup demonstrated impaired tracer kinetics, marked by reduced tracer influx and slower egress. CONCLUSION: The data show that tracer kinetics for brain and nasal turbinates are related to each other and both reflect the amyloid status of the brain. As such, these data add to evidence that the nasal pathway is a potential CSF drainage site in humans. These data warrant further investigation of brain and nasal contributions to protein clearance in neurodegenerative disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Animales , Humanos , Cornetes Nasales/metabolismo , Cornetes Nasales/patología , Butanoles/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Tiazoles/metabolismo , Tomografía de Emisión de Positrones/métodos , Enfermedad de Alzheimer/metabolismo , Envejecimiento , Encéfalo/metabolismo , 1-Butanol/metabolismo , Péptidos beta-Amiloides/metabolismo , Mamíferos/metabolismo
2.
PET Clin ; 18(3): 287-294, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37117123

RESUMEN

Fibroblast activation protein-α (FAP) has attracted increasing attention as a selective marker of cancer-associated fibroblasts (CAFs) and more broadly, of activated fibroblasts in tissues undergoing remodeling of their ECM due to chronic inflammation, fibrosis, or wound healing. Since FAP is critical to the initiation of metastatic growth, its expression will serve as a molecular marker to detect tumors at an earlier stage of development compared to currently available methods. The design of high affinity small molecule FAP inhibitor will allow for noninvasive imaging of activated fibroblast in cancer patients. Small molecule inhibitors of FAP are being developed for targeted radiotherapy of tumors.


Asunto(s)
Neoplasias , Serina Endopeptidasas , Humanos , Serina Endopeptidasas/metabolismo , Ligandos , Fibroblastos/metabolismo , Fibroblastos/patología , Neoplasias/metabolismo
4.
Adv Kidney Dis Health ; 30(6): 487-495, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38453264

RESUMEN

Traditional dietary guidelines for patients with kidney disease recommend restriction of plant foods due to concerns about hyperkalemia and associated adverse events. Studies conducted over several decades have shown that the basis for these guidelines does not match the evidence. Serum potassium levels can be elevated in patients with reduced kidney function after consumption of foods with potassium-based additives or with highly concentrated potassium content such as juices, dried fruit, or purees. However, plant foods may have certain qualities that may blunt potassium retention including their alkalinizing effects, the lack of bioavailable potassium, and the impact of dietary fiber in organic plant foods on colonic potassium excretion. Furthermore, there are many benefits of plant foods that patients with kidney disease may be missing by excluding them from their diets by recommending the historical low-potassium "renal diet." Revised dietary recommendations for kidney health may encourage patient-centered kidney recipes that revolve around plant foods and do not restrict them.


Asunto(s)
Hiperpotasemia , Insuficiencia Renal Crónica , Humanos , Hiperpotasemia/etiología , Dieta a Base de Plantas , Dieta , Potasio , Frutas
5.
Transl Oncol ; 22: 101450, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35597190

RESUMEN

The validation of prostate specific membrane antigen (PSMA) as a molecular target in metastatic castration-resistant prostate cancer has stimulated the development of multiple classes of theranostic ligands that specifically target PSMA. Theranostic ligands are used to image disease or selectively deliver cytotoxic radioactivity to cells expressing PSMA according to the radioisotope conjugated to the ligand. PSMA theranostics is a rapidly advancing field that is now integrating into clinical management of prostate cancer patients. In this review we summarize published research describing the biological role(s) and activity of PSMA, highlight the most clinically advanced PSMA targeting molecules and biomacromolecules, and identify next generation PSMA ligands that aim to further improve treatment efficacy. The goal of this review is to provide a comprehensive assessment of the current state-of-play and a roadmap to achieving further advances in PSMA theranostics.

6.
Molecules ; 27(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35268652

RESUMEN

Cancer cells require lipids to fulfill energetic, proliferative, and signaling requirements. Even though these cells can take up exogenous fatty acids, the majority exhibit a dependency on de novo fatty acid synthesis. Fatty acid synthase (FASN) is the rate-limiting enzyme in this process. Expression and activity of FASN is elevated in multiple cancers, where it correlates with disease progression and poor prognosis. These observations have sparked interest in developing methods of detecting FASN expression in vivo. One promising approach is the imaging of radiolabeled molecular probes targeting FASN by positron emission tomography (PET). However, although [11C]acetate uptake by prostate cancer cells correlates with FASN expression, no FASN-specific PET probes currently exist. Our aim was to synthesize and evaluate a series of small molecule triazolones based on GSK2194069, an FASN inhibitor with IC50 = 7.7 ± 4.1 nM, for PET imaging of FASN expression. These triazolones were labeled with carbon-11 in good yield and excellent radiochemical purity, and binding to FASN-positive LNCaP cells was significantly higher than FASN-negative PC3 cells. Despite these promising characteristics, however, these molecules exhibited poor in vivo pharmacokinetics and were predominantly retained in lymph nodes and the hepatobiliary system. Future studies will seek to identify structural modifications that improve tumor targeting while maintaining the excretion profile of these first-generation 11C-methyltriazolones.


Asunto(s)
Ácido Graso Sintasas
7.
Fluids Barriers CNS ; 19(1): 21, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35287702

RESUMEN

BACKGROUND: In sporadic Alzheimer's disease (AD), brain amyloid-beta (Aß) deposition is believed to be a consequence of impaired Aß clearance, but this relationship is not well established in living humans. CSF clearance, a major feature of brain glymphatic clearance (BGC), has been shown to be abnormal in AD murine models. MRI phase contrast and intrathecally delivered contrast studies have reported reduced CSF flow in AD. Using PET and tau tracer 18F-THK5117, we previously reported that the ventricular CSF clearance of the PET tracer was reduced in AD and associated with elevated brain Aß levels. METHODS: In the present study, we use two PET tracers, 18F-THK5351 and 11C-PiB to estimate CSF clearance calculated from early dynamic PET frames in 9 normal controls and 15 AD participants. RESULTS: we observed that the ventricular CSF clearance measures were correlated (r = 0.66, p < 0.01), with reductions in AD of 18 and 27%, respectively. We also replicated a significant relationship between ventricular CSF clearance (18F-THK5351) and brain Aß load (r = - 0.64, n = 24, p < 0.01). With a larger sample size, we extended our observations to show that reduced CSF clearance is associated with reductions in cortical thickness and cognitive performance. CONCLUSIONS: Overall, the findings support the hypothesis that failed CSF clearance is a feature of AD that is related to Aß deposition and to the pathology of AD. Longitudinal studies are needed to determine whether failed CSF clearance is a predictor of progressive amyloidosis or its consequence.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides , Amiloidosis/complicaciones , Amiloidosis/patología , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Ratones
8.
J Ren Nutr ; 32(6): 641-649, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35131414

RESUMEN

Traditionally, diets for kidney disease were low in potassium. This recommendation was based on outdated research and often wrong assumptions that do not reflect current evidence. In fact, studies conducted over the past decades show patients with CKD, including kidney failure, do not benefit from the restriction of plant foods relative to control. Generally, dietary potassium does not correlate with serum potassium, and we posit that this is due to the effects of fiber on colonic potassium absorption, the alkalinizing effect of fruits and vegetables on metabolic acidosis, and the bioavailability of dietary potassium in plant foods. Also, consumption of plant foods may provide pleiotropic benefits to patients with CKD. Emerging dietary recommendations for kidney health should be devoid of dietary potassium restrictions from plant foods so that patient-centered kidney recipes can be encouraged and promoted.


Asunto(s)
Brassica , Hiperpotasemia , Insuficiencia Renal Crónica , Humanos , Potasio en la Dieta , Brassica/metabolismo , Potasio
9.
Curr Cardiol Rep ; 24(3): 247-260, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35028820

RESUMEN

PURPOSE OF REVIEW: Successful treatment of cancer can be hampered by the attendant risk of cardiotoxicity, manifesting as cardiomyopathy, left ventricle systolic dysfunction and, in some cases, heart failure. This risk can be mitigated if the injury to the heart is detected before the onset to irreversible cardiac impairment. The gold standard for cardiac imaging in cardio-oncology is echocardiography. Despite improvements in the application of this modality, it is not typically sensitive to sub-clinical or early-stage dysfunction. We identify in this review some emerging tracers for detecting incipient cardiotoxicity by positron emission tomography (PET). RECENT FINDINGS: Vectors labeled with positron-emitting radionuclides (e.g., carbon-11, fluorine-18, gallium-68) are now available to study cardiac function, metabolism, and tissue repair in preclinical models. Many of these probes are highly sensitive to early damage, thereby potentially addressing the limitations of current imaging approaches, and show promise in preliminary clinical evaluations. The overlapping pathophysiology between cardiotoxicity and heart failure significantly expands the number of imaging tools available to cardio-oncology. This is highlighted by the emergence of radiolabeled probes targeting fibroblast activation protein (FAP) for sensitive detection of dysregulated healing process that underpins adverse cardiac remodeling. The growth of PET scanner technology also creates an opportunity for a renaissance in metabolic imaging in cardio-oncology research.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapéutico , Cardiotoxicidad/diagnóstico por imagen , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Corazón/diagnóstico por imagen , Humanos , Oncología Médica , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Tomografía de Emisión de Positrones
10.
Transl Oncol ; 15(1): 101242, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34649151

RESUMEN

BACKGROUND: The primary objective was to compare the overall diagnostic performance, presented as detection rate of 68Ga-PSMA-HBED-CC positron emission tomography/magnetic resonance imaging (PSMA PET/MRI) versus conventional, multiparametric MRI (mpMRI) in a population of patients with biochemically recurrent prostate cancer. In conjunction with this analysis, secondary objectives included the evaluation of the detection rate stratified by PSA levels and primary treatment modality. METHODS: A total of 165 PSMA PET MRI were performed from April 2018 to May 2021, of whom 108 were presenting for biochemical recurrent disease. The PSMA PET vertex to thigh were read by two different board-certified nuclear medicine physicians while the MRI head and neck, chest, abdomen, and pelvis (with dedicated, PI-RADS compliant multiparametric prostate MRI) were read by two board certified diagnostic radiologists. ANALYSIS: PSMA PET/MRI had a higher detection rate than mpMRI when evaluating patients with biochemical recurrence (BCR) with similar results demonstrated when sub-analysis was performed using PSA levels, primary treatment modality, and time since androgen deprivation therapy. Our study also showed PSMA PET/MRI had a higher sensitivity than mpMRI. DISCUSSION: Our findings demonstrate that PSMA PET/MRI is a better imaging modality in the detection of disease in the setting of BCR when compared to MRI alone. Combined utility with PSMA PET/MRI is a powerful tool which can aid in not only the detection of disease, but also guide in treatment planning for prostate cancer patients.

11.
EJNMMI Radiopharm Chem ; 6(1): 38, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34928478

RESUMEN

BACKGROUND: As 225Ac-labeled radiopharmaceuticals continue to show promise as targeted alpha therapeutics, there is a growing need to standardize quality control (QC) testing procedures. The determination of radiochemical purity (RCP) is an essential QC test. A significant obstacle to RCP testing is the disruption of the secular equilibrium between actinium-225 and its daughter radionuclides during labeling and QC testing. In order to accelerate translation of actinium-225 targeted alpha therapy, we aimed to determine the earliest time point at which the RCP of an 225Ac-labeled radiopharmaceutical can be accurately quantified. RESULTS: Six ligands were conjugated to macrocyclic metal chelators and labeled with actinium-225 under conditions designed to generate diverse incorporation yields. RCP was determined by radio thin layer chromatography (radioTLC) followed by exposure of the TLC plate on a phosphor screen either 0.5, 2, 3.5, 5, 6.5, or 26 h after the plate was developed. The dataset was used to create models for predicting the true RCP for any pre-equilibrium measurement taken at an early time point. The 585 TLC measurements span RCP values of 1.8-99.5%. The statistical model created from these data predicted an independent data set with high accuracy. Predictions made at 0.5 h are more uncertain than predictions made at later time points. This is primarily due to the decay of bismuth-213. A measurement of RCP > 90% at 2 h predicts a true RCP > 97% and guarantees that RCP will exceed 90% after secular equilibrium is reached. These findings were independently validated using NaI(Tl) scintillation counting and high resolution gamma spectroscopy on a smaller set of samples with 10% ≤ RCP ≤ 100%. CONCLUSIONS: RCP of 225Ac-labeled radiopharmaceuticals can be quantified with acceptable accuracy at least 2 h after radioTLC using various methods of quantifying particle emissions. This time point best balances the need to accurately quantify RCP with the need to safely release the batch as quickly as possible.

12.
EJNMMI Phys ; 8(1): 39, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33914185

RESUMEN

INTRODUCTION: Quantitative positron emission tomography (PET) studies of neurodegenerative diseases typically require the measurement of arterial input functions (AIF), an invasive and risky procedure. This study aims to assess the reproducibility of [11C]DPA-713 PET kinetic analysis using population-based input function (PBIF). The final goal is to possibly eliminate the need for AIF. MATERIALS AND METHODS: Eighteen subjects including six healthy volunteers (HV) and twelve Parkinson disease (PD) subjects from two [11C]-DPA-713 PET studies were included. Each subject underwent 90 min of dynamic PET imaging. Five healthy volunteers underwent a test-retest scan within the same day to assess the repeatability of the kinetic parameters. Kinetic modeling was carried out using the Logan total volume of distribution (VT) model. For each data set, kinetic analysis was performed using a patient-specific AIF (PSAIF, ground-truth standard) and then repeated using the PBIF. PBIF was generated using the leave-one-out method for each subject from the remaining 17 subjects and after normalizing the PSAIFs by 3 techniques: (a) Weightsubject×DoseInjected, (b) area under AIF curve (AUC), and (c) Weightsubject×AUC. The variability in the VT measured with PSAIF, in the test-retest study, was determined for selected brain regions (white matter, cerebellum, thalamus, caudate, putamen, pallidum, brainstem, hippocampus, and amygdala) using the Bland-Altman analysis and for each of the 3 normalization techniques. Similarly, for all subjects, the variabilities due to the use of PBIF were assessed. RESULTS: Bland-Altman analysis showed systematic bias between test and retest studies. The corresponding mean bias and 95% limits of agreement (LOA) for the studied brain regions were 30% and ± 70%. Comparing PBIF- and PSAIF-based VT estimate for all subjects and all brain regions, a significant difference between the results generated by the three normalization techniques existed for all brain structures except for the brainstem (P-value = 0.095). The mean % difference and 95% LOA is -10% and ±45% for Weightsubject×DoseInjected; +8% and ±50% for AUC; and +2% and ± 38% for Weightsubject×AUC. In all cases, normalizing by Weightsubject×AUC yielded the smallest % bias and variability (% bias = ±2%; LOA = ±38% for all brain regions). Estimating the reproducibility of PBIF-kinetics to PSAIF based on disease groups (HV/PD) and genotype (MAB/HAB), the average VT values for all regions obtained from PBIF is insignificantly higher than PSAIF (%difference = 4.53%, P-value = 0.73 for HAB; and %difference = 0.73%, P-value = 0.96 for MAB). PBIF also tends to overestimate the difference between PD and HV for HAB (% difference = 32.33% versus 13.28%) and underestimate it in MAB (%difference = 6.84% versus 20.92%). CONCLUSIONS: PSAIF kinetic results are reproducible with PBIF, with variability in VT within that obtained for the test-retest studies. Therefore, VT assessed using PBIF-based kinetic modeling is clinically feasible and can be an alternative to PSAIF.

13.
Mol Imaging Biol ; 23(5): 686-696, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33721173

RESUMEN

PURPOSE: Fibroblast activation protein-α (FAPα) is uniquely expressed in activated fibroblasts, including cancer-associated fibroblasts that populate tumor stroma and contribute to proliferation and immunosuppression. Radiolabeled FAPα inhibitors enable imaging of multiple human cancers, but time-dependent clearance from tumors currently limits their utility as FAPα-targeted radiotherapeutics. We sought to increase the area under the curve (AUC) by constructing a trifunctional ligand that binds FAPα with high affinity and also binds albumin and theranostic radiometals. PROCEDURES: RPS-309 comprised a FAPα-targeting moiety, an albumin-binding group, and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Inhibition of recombinant human FAPα (rhFAPα) was determined by colorimetric assay. Affinity for human serum albumin (HSA) was determined by high-performance affinity chromatography. The tissue distribution of [68Ga]Ga-RPS-309 in SW872 tumor xenograft-bearing mice was imaged by microPET/CT and quantified by biodistribution studies performed from 30 min to 3 h post injection (p.i.). The biodistribution of [177Lu]Lu-RPS-309 was determined at 4, 24, and 96 h p.i. RESULTS: RPS-309 inhibits rhFAPα with IC50 = 7.3 ± 1.4 nM. [68Ga]Ga-RPS-309 is taken up specifically by FAPα-expressing cells and binds HSA with Kd = 4.6 ± 0.1 µM. Uptake of the radiolabeled ligand in tumors was evident from 30 min p.i. (> 5 %ID/g) and was significantly reduced by co-injection of RPS-309. Specific skeletal uptake was also observed. Activity in tumors was constant through 4 h p.i., but cleared significantly by 24 h. The AUC in this period was 127 (%ID/g) × h. CONCLUSIONS: RPS-309 is a high-affinity FAPα inhibitor with prolonged plasma residence. Introduction of the albumin-binding group did not compromise FAPα binding. Although initial tumor uptake was high and FAPα-specific, RPS-309 also progressively cleared from tumors. Nevertheless, RPS-309 incorporates multiple sites in which structural diversity can be introduced, and therefore serves as a platform for future structure-activity relationship studies.


Asunto(s)
Antineoplásicos , Fibroblastos Asociados al Cáncer/metabolismo , Endopeptidasas/metabolismo , Proteínas de la Membrana/metabolismo , Medicina de Precisión/métodos , Radiofármacos , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Femenino , Humanos , Ligandos , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/química , Radiofármacos/farmacocinética , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Bone Joint Surg Am ; 103(10): e40, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33587512

RESUMEN

BACKGROUND: Rotator cuff repair site failure is a well-established clinical concern. Tendon-to-bone healing is initiated by inflammatory mediators followed by matrix synthesis by fibroblasts. The kinetics of fibroblast accumulation and activity are currently poorly understood. METHODS: Ninety-six mice underwent supraspinatus tendon repair. Six were used for imaging using a novel 68Gallium (Ga)-labeled fibroblast activation protein alpha (FAP-α) inhibitor and positron emission tomography-computed tomography (PET/CT) at days 0 (before surgery), 3, 7, 14, and 28. Sixty-eight animals were divided into 4 groups to be evaluated at 3, 7, 14, or 28 days. Twenty-two native shoulders from mice without surgery were used as the control group (intact tendon). Six animals from each group were used for histological analysis; 6 from each group were used for evaluation of fibroblastic response-related gene expression; and 10 mice each from the intact, 14-day, and 28-day groups were used for biomechanical testing. RESULTS: There was minimal localization of 68Ga-labeled FAP-α inhibitor in the shoulders at day 0 (before surgery). There was significantly increased uptake in the shoulders with surgery compared with the contralateral sides without surgery at 3, 7, and 14 days. 68Ga-labeled FAP-α inhibitor uptake in the surgically treated shoulders increased gradually and peaked at 14 days followed by a decrease at 28 days. Gene expression for smooth muscle alpha (α)-2 (acta2), FAP-α, and fibronectin increased postsurgery followed by a drop at 28 days. Immunohistochemical analysis showed that FAP-α-positive cell density followed a similar temporal trend, peaking at 14 days. All trends matched closely with the PET/CT results. Biomechanical testing demonstrated a gradual increase in failure load during the healing process. CONCLUSIONS: 68Ga-labeled FAP-α inhibitor PET/CT allows facile, high-contrast in vivo 3-dimensional imaging of fibroblastic activity in a mouse rotator cuff repair model. CLINICAL RELEVANCE: Noninvasive imaging of activated fibroblasts using labeled radiotracers may be a valuable tool to follow the progression of healing at the bone-tendon interface.


Asunto(s)
Fibroblastos/fisiología , Proteínas de la Membrana/antagonistas & inhibidores , Lesiones del Manguito de los Rotadores/fisiopatología , Manguito de los Rotadores/fisiopatología , Animales , Modelos Animales de Enfermedad , Endopeptidasas , Radioisótopos de Galio , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Manguito de los Rotadores/diagnóstico por imagen , Manguito de los Rotadores/inmunología , Manguito de los Rotadores/cirugía , Lesiones del Manguito de los Rotadores/diagnóstico por imagen , Lesiones del Manguito de los Rotadores/inmunología , Lesiones del Manguito de los Rotadores/cirugía
15.
Hum Gene Ther ; 31(23-24): 1237-1259, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33233962

RESUMEN

A method is presented for quantitative analysis of the biodistribution of adeno-associated virus (AAV) gene transfer vectors following in vivo administration. We used iodine-124 (I-124) radiolabeling of the AAV capsid and positron emission tomography combined with compartmental modeling to quantify whole-body and organ-specific biodistribution of AAV capsids from 1 to 72 h following administration. Using intravenous (IV) and intracisternal (IC) routes of administration of AAVrh.10 and AAV9 vectors to nonhuman primates in the absence or presence of anticapsid immunity, we have identified novel insights into initial capsid biodistribution and organ-specific capsid half-life. Neither I-124-labeled AAVrh.10 nor AAV9 administered intravenously was detected at significant levels in the brain relative to the administered vector dose. Approximately 50% of the intravenously administered labeled capsids were dispersed throughout the body, independent of the liver, heart, and spleen. When administered by the IC route, the labeled capsid had a half-life of ∼10 h in the cerebral spinal fluid (CSF), suggesting that by this route, the CSF serves as a source with slow diffusion into the brain. For both IV and IC administration, there was significant influence of pre-existing anticapsid immunity on I-124-capsid biodistribution. The methodology facilitates quantitative in vivo viral vector dosimetry, which can serve as a technique for evaluation of both on- and off-target organ biodistribution, and potentially accelerate gene therapy development through rapid prototyping of novel vector designs.


Asunto(s)
Encéfalo/diagnóstico por imagen , Dependovirus/genética , Radioisótopos de Yodo/farmacología , Imagen de Cuerpo Entero/métodos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/virología , Dependovirus/química , Vectores Genéticos/genética , Humanos , Radioisótopos de Yodo/química , Primates , Distribución Tisular/efectos de los fármacos
16.
Prostate ; 80(15): 1273-1296, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32865839

RESUMEN

INTRODUCTION: The Prostate Cancer Foundation (PCF) convened a PCF prostate-specific membrane antigen (PSMA) Theranostics State of the Science Meeting on 18 November 2019, at Weill Cornell Medicine, New York, NY. METHODS: The meeting was attended by 22 basic, translational, and clinical researchers from around the globe, with expertise in PSMA biology, development and use of PSMA theranostics agents, and clinical trials. The goal of this meeting was to discuss the current state of knowledge, the most important biological and clinical questions, and critical next steps for the clinical development of PSMA positron emission tomography (PET) imaging agents and PSMA-targeted radionuclide agents for patients with prostate cancer. RESULTS: Several major topic areas were discussed including the biology of PSMA, the role of PSMA-targeted PET imaging in prostate cancer, the physics and performance of different PSMA-targeted PET imaging agents, the current state of clinical development of PSMA-targeted radionuclide therapy (RNT) agents, the role of dosimetry in PSMA RNT treatment planning, barriers and challenges in PSMA RNT clinical development, optimization of patient selection for PSMA RNT trials, and promising combination treatment approaches with PSMA RNT. DISCUSSION: This article summarizes the presentations from the meeting for the purpose of globally disseminating this knowledge to advance the use of PSMA-targeted theranostic agents for imaging and treatment of patients with prostate cancer.


Asunto(s)
Neoplasias de la Próstata/terapia , Humanos , Masculino , Terapia Molecular Dirigida/métodos , Medicina de Precisión , Nanomedicina Teranóstica
17.
Nat Commun ; 11(1): 1736, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269227

RESUMEN

Carbon-11 (11C) is one of the most ideal positron emitters for labeling bioactive molecules for molecular imaging studies. The lack of convenient and fast incorporation methods to introduce 11C into organic molecules often hampers the use of this radioisotope. Here, a fluoride-mediated desilylation (FMDS) 11C-labeling approach is reported. This method relies on thermodynamically favored Si-F bond formation to generate a carbanion, therefore enabling the highly efficient and speedy incorporation of [11C]CO2 and [11C]CH3I into molecules with diversified structures. It provides facile and rapid access to 11C-labeled compounds with carbon-11 attached at various hybridized carbons as well as oxygen, sulfur and nitrogen atoms with broad functional group tolerance. The exemplified syntheses of several biologically and clinically important radiotracers illustrates the potentials of this methodology.


Asunto(s)
Radioisótopos de Carbono/química , Fluoruros/química , Compuestos de Organosilicio/química , Acetoacetatos/química , Metilación , Racloprida/farmacología , Radiofármacos/síntesis química , Radiofármacos/química
18.
Mol Pharm ; 17(6): 1954-1962, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32286841

RESUMEN

The application of small molecules targeting prostate-specific membrane antigen (PSMA) has emerged as a highly promising clinical strategy for visualization and treatment of prostate cancer. Ligands that integrate the ability to both quantify the distribution of radioactivity and treat disease through the use of a matched pair of radionuclides have particular value in clinical and regulatory settings. In this study, we describe the development and preclinical evaluation of RPS-085, a ligand that binds PSMA and serum albumin and exploits the 64/67Cu radionuclide pair for prostate cancer theranostics. RPS-085 was synthesized by conjugation of a PSMA-targeting moiety, an Nε-(2-(4-iodophenyl)acetyl)lysine albumin binding group, and a bifunctionalized MeCOSar chelator. The IC50 of the metal-free RPS-085 was determined in a competitive binding assay. The affinity for human serum albumin of the radiolabeled compound was determined by high-performance affinity chromatography. Radiolabeling was performed in NH4OAc buffer at 25 °C. The stability of the radiolabeled compounds was assessed in vitro and in vivo. The biodistribution of [64/67Cu]Cu-RPS-085 was determined following intravenous administration to male BALB/c mice bearing LNCaP tumor xenografts. The radiochemical yields of [64/67Cu]Cu-RPS-085 were nearly quantitative after 20 min. The metal-free complex is a potent inhibitor of PSMA (IC50 = 29 ± 2 nM), and the radiolabeled compound has moderate affinity for human serum albumin (Kd = 9.9 ± 1.7 µM). Accumulation of the tracer in mice was primarily evident in tumor and kidneys. Activity in all other tissues, including blood, was negligible, and the radiolabeled compounds demonstrated high stability in vitro and in vivo. Tumor activity reached a maximum at 4 h post injection (p.i.) and cleared gradually over a period of 96 h. By contrast, activity in the kidney cleared rapidly from 4 to 24 h p.i. As a consequence, by 24 h p.i., the tumor-to-kidney ratio exceeds 2, and the predicted dose to tumors is significantly greater than the dose to kidneys. [64Cu]Cu-RPS-085 combines rapid tissue distribution and clearance with prolonged retention in LNCaP tumor xenografts. The pharmacokinetics should enable radioligand therapy using [67Cu]Cu-RPS-085. By virtue of its rapid kidney clearance, the therapeutic index of [67Cu]Cu-RPS-085 likely compares favorably to its parent structure, [177Lu]Lu-RPS-063, a highly avid PSMA-targeting compound. On this basis, [64/67Cu]Cu-RPS-085 show great promise as PSMA-targeting theranostic ligands for prostate cancer imaging and therapy.


Asunto(s)
Radioisótopos de Cobre/química , Cobre/química , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/diagnóstico por imagen , Animales , Línea Celular , Masculino , Ratones Endogámicos BALB C , Estructura Molecular , Tomografía Computarizada por Tomografía de Emisión de Positrones , Medicina de Precisión/métodos , Neoplasias de la Próstata/metabolismo
19.
Inorg Chem ; 59(7): 5116-5132, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32216281

RESUMEN

Coordination compounds of the lanthanide ions (Ln3+) have important applications in medicine due to their photophysical, magnetic, and nuclear properties. To effectively use the Ln3+ ions for these applications, chelators that stably bind them in vivo are required to prevent toxic side effects that arise from localization of these ions in off-target tissue. In this study, two new picolinate-containing chelators, a heptadentate ligand OxyMepa and a nonadentate ligand Oxyaapa, were prepared, and their coordination chemistries with Ln3+ ions were thoroughly investigated to evaluate their suitability for use in medicine. Protonation constants of these chelators and stability constants for their Ln3+ complexes were evaluated. Both ligands exhibit a thermodynamic preference for small Ln3+ ions. The log KLuL = 12.21 and 21.49 for OxyMepa and Oxyaapa, respectively, indicating that the nonadentate Oxyaapa forms complexes of significantly higher stability than the heptadentate OxyMepa. X-ray crystal structures of the Lu3+ complexes were obtained, revealing that Oxyaapa saturates the coordination sphere of Lu3+, whereas OxyMepa leaves an additional open coordination site for a bound water ligand. Solution structural studies carried out with NMR spectroscopy revealed the presence of two possible conformations for these ligands upon Ln3+ binding. Density functional theory (DFT) calculations were applied to probe the geometries and energies of these conformations. Energy differences obtained by DFT are small but consistent with experimental data. The photophysical properties of the Eu3+ and Tb3+ complexes were characterized, revealing modest photoluminescent quantum yields of <2%. Luminescence lifetime measurements were carried out in H2O and D2O, showing that the Eu3+ and Tb3+ complexes of OxyMepa have two inner-sphere water ligands, whereas the Eu3+ and Tb3+ complexes of Oxyaapa have zero. Lastly, variable-temperature 17O NMR spectroscopy was performed for the Gd-OxyMepa complex to determine its water exchange rate constant of kex298 = (2.8 ± 0.1) × 106 s-1. Collectively, this comprehensive characterization of these Ln3+ chelators provides valuable insight for their potential use in medicine and garners additional understanding of ligand design strategies.

20.
Appl Radiat Isot ; 159: 109078, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32068145

RESUMEN

A facile synthesis method for the preparation of [1-11C]butanol, a regional cerebral blood flow imaging agent, was developed. Using a solid phase extraction method, the highly polar and volatile molecule [1-11C]butanol was quickly concentrated, purified, and released as final product; boasting high radiochemical and chemical purities as well as high radiochemical yields. The final drug product was obtained as a sterile, pyrogen-free solution that conforms United States Pharmacopeia (USP) <823> requirements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA