Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 29(11): 1101-1112, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36344846

RESUMEN

Alternative polyadenylation (APA) yields transcripts differing in their 3'-end, and its regulation is altered in cancer, including prostate cancer. Here we have uncovered a mechanism of APA regulation impinging on the interaction between the exonuclease XRN2 and the RNA-binding protein Sam68, whose increased expression in prostate cancer is promoted by the transcription factor MYC. Genome-wide transcriptome profiling revealed a widespread impact of the Sam68/XRN2 complex on APA. XRN2 promotes recruitment of Sam68 to its target transcripts, where it competes with the cleavage and polyadenylation specificity factor for binding to strong polyadenylation signals at distal ends of genes, thus promoting usage of suboptimal proximal polyadenylation signals. This mechanism leads to 3' untranslated region shortening and translation of transcripts encoding proteins involved in G1/S progression and proliferation. Thus, our findings indicate that the APA program driven by Sam68/XRN2 promotes cell cycle progression and may represent an actionable target for therapeutic intervention.


Asunto(s)
Poliadenilación , Neoplasias de la Próstata , Humanos , Masculino , Regiones no Traducidas 3'/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Neoplasias de la Próstata/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Nucleic Acids Res ; 50(17): 9780-9796, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36043441

RESUMEN

Prostate cancer (PC) relies on androgen receptor (AR) signaling. While hormonal therapy (HT) is efficacious, most patients evolve to an incurable castration-resistant stage (CRPC). To date, most proposed mechanisms of acquired resistance to HT have focused on AR transcriptional activity. Herein, we uncover a new role for the AR in alternative cleavage and polyadenylation (APA). Inhibition of the AR by Enzalutamide globally regulates APA in PC cells, with specific enrichment in genes related to transcription and DNA topology, suggesting their involvement in transcriptome reprogramming. AR inhibition selects promoter-distal polyadenylation sites (pAs) enriched in cis-elements recognized by the cleavage and polyadenylation specificity factor (CPSF) complex. Conversely, promoter-proximal intronic pAs relying on the cleavage stimulation factor (CSTF) complex are repressed. Mechanistically, Enzalutamide induces rearrangement of APA subcomplexes and impairs the interaction between CPSF and CSTF. AR inhibition also induces co-transcriptional CPSF recruitment to gene promoters, predisposing the selection of pAs depending on this complex. Importantly, the scaffold CPSF160 protein is up-regulated in CRPC cells and its depletion represses HT-induced APA patterns. These findings uncover an unexpected role for the AR in APA regulation and suggest that APA-mediated transcriptome reprogramming represents an adaptive response of PC cells to HT.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Benzamidas , Línea Celular Tumoral , Proliferación Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Factor de Estimulación del Desdoblamiento/metabolismo , Humanos , Masculino , Nitrilos , Feniltiohidantoína , Poliadenilación , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
3.
Cancers (Basel) ; 14(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35884524

RESUMEN

Recent reports have shown a link between radiation exposure and non-cancer diseases such as radiation-induced heart disease (RIHD). Radiation exposures are often inhomogeneous, and out-of-target effects have been studied in terms of cancer risk, but very few studies have been carried out for non-cancer diseases. Here, the role of miRNAs in the pathogenesis of RIHD was investigated. C57Bl/6J female mice were whole- (WBI) or partial-body-irradiated (PBI) with 2 Gy of X-rays or sham-irradiated (SI). In PBI exposure, the lower third of the mouse body was irradiated, while the upper two-thirds were shielded. From all groups, hearts were collected 15 days or 6 months post-irradiation. The MiRNome analysis at 15 days post-irradiation showed that miRNAs, belonging to the myomiR family, were highly differentially expressed in WBI and PBI mouse hearts compared with SI hearts. Raman spectral data collected 15 days and 6 months post-irradiation showed biochemical differences among SI, WBI and PBI mouse hearts. Fibrosis in WBI and PBI mouse hearts, indicated by the increased deposition of collagen and the overexpression of genes involved in myofibroblast activation, was found 6 months post-irradiation. Using an in vitro co-culture system, involving directly irradiated skeletal muscle and unirradiated ventricular cardiac human cells, we propose the role of miR-1/133a as mediators of the abscopal response, suggesting that miRNA-based strategies could be relevant for limiting tissue-dependent reactions in non-directly irradiated tissues.

4.
PLoS One ; 17(3): e0265281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35286349

RESUMEN

PURPOSE: The aim of this study was to explore the effects of chronic low-dose-rate gamma-radiation at a multi-scale level. The specific objective was to obtain an overall view of the endothelial cell response, by integrating previously published data on different cellular endpoints and highlighting possible different mechanisms underpinning radiation-induced senescence. MATERIALS AND METHODS: Different datasets were collected regarding experiments on human umbilical vein endothelial cells (HUVECs) which were chronically exposed to low dose rates (0, 1.4, 2.1 and 4.1 mGy/h) of gamma-rays until cell replication was arrested. Such exposed cells were analyzed for different complementary endpoints at distinct time points (up to several weeks), investigating cellular functions such as proliferation, senescence and angiogenic properties, as well as using transcriptomics and proteomics profiling. A mathematical model was proposed to describe proliferation and senescence. RESULTS: Simultaneous ceasing of cell proliferation and senescence onset as a function of time were well reproduced by the logistic growth curve, conveying shared equilibria between the two endpoints. The combination of all the different endpoints investigated highlighted a dose-dependence for prematurely induced senescence. However, the underpinning molecular mechanisms appeared to be dissimilar for the different dose rates, thus suggesting a more complex scenario. CONCLUSIONS: This study was conducted integrating different datasets, focusing on their temporal dynamics, and using a systems biology approach. Results of our analysis highlight that different dose rates have different effects in inducing premature senescence, and that the total cumulative absorbed dose also plays an important role in accelerating endothelial cell senescence.


Asunto(s)
Senescencia Celular , Biología de Sistemas , Células Cultivadas , Rayos gamma/efectos adversos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Radiobiología
5.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35216284

RESUMEN

Cell communication via exosomes is capable of influencing cell fate in stress situations such as exposure to ionizing radiation. In vitro and in vivo studies have shown that exosomes might play a role in out-of-target radiation effects by carrying molecular signaling mediators of radiation damage, as well as opposite protective functions resulting in resistance to radiotherapy. However, a global understanding of exosomes and their radiation-induced regulation, especially within the context of an intact mammalian organism, has been lacking. In this in vivo study, we demonstrate that, compared to sham-irradiated (SI) mice, a distinct pattern of proteins and miRNAs is found packaged into circulating plasma exosomes after whole-body and partial-body irradiation (WBI and PBI) with 2 Gy X-rays. A high number of deregulated proteins (59% of WBI and 67% of PBI) was found in the exosomes of irradiated mice. In total, 57 and 13 miRNAs were deregulated in WBI and PBI groups, respectively, suggesting that the miRNA cargo is influenced by the tissue volume exposed to radiation. In addition, five miRNAs (miR-99b-3p, miR-200a-3p, miR-200a, miR-182-5p, miR-182) were commonly overexpressed in the exosomes from the WBI and PBI groups. In this study, particular emphasis was also given to the determination of the in vivo effect of exosome transfer by intracranial injection in the highly radiosensitive neonatal cerebellum at postnatal day 3. In accordance with a major overall anti-apoptotic function of the commonly deregulated miRNAs, here, we report that exosomes from the plasma of irradiated mice, especially in the case of WBI, prevent radiation-induced apoptosis, thus holding promise for exosome-based future therapeutic applications against radiation injury.


Asunto(s)
Exosomas , MicroARNs , Traumatismos por Radiación , Animales , Apoptosis , Cerebelo/metabolismo , Exosomas/metabolismo , Mamíferos/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteómica , Traumatismos por Radiación/metabolismo
6.
Bioinformatics ; 38(6): 1724-1726, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34927668

RESUMEN

MOTIVATION: Tumor mutational burden (TMB) has been proposed as a predictive biomarker for immunotherapy response in cancer patients, as it is thought to enrich for tumors with high neoantigen load. TMB assessed by whole-exome sequencing is considered the gold standard but remains confined to research settings. In the clinical setting, targeted gene panels sampling various genomic sizes along with diverse strategies to estimate TMB were proposed and no real standard has emerged yet. RESULTS: We provide the community with TMBleR, a tool to measure the clinical impact of various strategies of panel-based TMB measurement. AVAILABILITY AND IMPLEMENTATION: R package and docker container (GPL-3 Open Source license): https://acc-bioinfo.github.io/TMBleR/. Graphical-user interface website: https://bioserver.ieo.it/shiny/app/tmbler. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Neoplasias , Humanos , Mutación , Neoplasias/patología , Inmunoterapia , Biomarcadores de Tumor/genética , Biología Computacional
7.
iScience ; 24(7): 102788, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34222841

RESUMEN

Recent advancements in bidimensional nanoparticles production such as graphene (G) and graphene oxide (GO) have the potential to meet the need for highly functional personal protective equipment (PPE) against SARS-CoV-2 infection. The ability of G and GO to interact with microorganisms provides an opportunity to develop engineered textiles for use in PPE and limit the spread of COVID-19. PPE in current use in high-risk settings for COVID transmission provides only a physical barrier that decreases infection likelihood and does not inactivate the virus. Here, we show that virus pre-incubation with soluble GO inhibits SARS-CoV-2 infection of VERO cells. Furthermore, when G/GO-functionalized polyurethane or cotton was in contact SARS-CoV-2, the infectivity of the fabric was nearly completely inhibited. The findings presented here constitute an important innovative nanomaterial-based strategy to significantly increase PPE efficacy in protection against the SARS-CoV-2 virus that may implement water filtration, air purification, and diagnostics methods.

8.
J Pers Med ; 11(3)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803592

RESUMEN

The advent of Precision Medicine has globally revolutionized the approach of translational research suggesting a patient-centric vision with therapeutic choices driven by the identification of specific predictive biomarkers of response to avoid ineffective therapies and reduce adverse effects. The spread of "multi-omics" analysis and the use of sensors, together with the ability to acquire clinical, behavioral, and environmental information on a large scale, will allow the digitization of the state of health or disease of each person, and the creation of a global health management system capable of generating real-time knowledge and new opportunities for prevention and therapy in the individual person (high-definition medicine). Real world data-based translational applications represent a promising alternative to the traditional evidence-based medicine (EBM) approaches that are based on the use of randomized clinical trials to test the selected hypothesis. Multi-modality data integration is necessary for example in precision oncology where an Avatar interface allows several simulations in order to define the best therapeutic scheme for each cancer patient.

9.
Matrix Biol ; 98: 1-20, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33798677

RESUMEN

Most cases of dominantly inherited osteogenesis imperfecta (OI) are caused by glycine substitutions in the triple helical domain of type I collagen α chains, which delay collagen folding, and cause the synthesis of collagen triple helical molecules with abnormal structure and post-translational modification. A variable extent of mutant collagen ER retention and other secondary mutation effects perturb osteoblast homeostasis and impair bone matrix quality. Amelioration of OI osteoblast homeostasis could be beneficial both to osteoblast anabolic activity and to the content of the extracellular matrix they deposit. Therefore, the effect of the chemical chaperone 4-phenylbutyrate (4-PBA) on cell homeostasis, collagen trafficking, matrix production and mineralization was investigated in primary osteoblasts from two murine models of moderate OI, Col1a1+/G349C and Col1a2+/G610C. At the cellular level, 4-PBA prevented intracellular accumulation of collagen and increased protein secretion, reducing aggregates within the mutant cells and normalizing ER morphology. At the extracellular level, increased collagen incorporation into matrix, associated with more mature collagen fibrils, was observed in osteoblasts from both models. 4-PBA also promoted OI osteoblast mineral deposition by increasing alkaline phosphatase expression and activity. Targeting osteoblast stress with 4-PBA improved both cellular and matrix abnormalities in culture, supporting further in vivo studies of its effect on bone tissue composition, strength and mineralization as a potential treatment for classical OI.


Asunto(s)
Osteogénesis Imperfecta , Animales , Colágeno , Colágeno Tipo I/genética , Modelos Animales de Enfermedad , Homeostasis , Ratones , Mutación , Osteoblastos , Osteogénesis Imperfecta/genética
10.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924260

RESUMEN

The brain undergoes ionizing radiation exposure in many clinical situations, particularly during radiotherapy for brain tumors. The critical role of the hippocampus in the pathogenesis of radiation-induced neurocognitive dysfunction is well recognized. The goal of this study is to test the potential contribution of non-targeted effects in the detrimental response of the hippocampus to irradiation and to elucidate the mechanisms involved. C57Bl/6 mice were whole body (WBI) or partial body (PBI) irradiated with 0.1 or 2.0 Gy of X-rays or sham irradiated. PBI consisted of the exposure of the lower third of the mouse body, whilst the upper two thirds were shielded. Hippocampi were collected 15 days or 6 months post-irradiation and a multi-omics approach was adopted to assess the molecular changes in non-coding RNAs, proteins and metabolic levels, as well as histological changes in the rate of hippocampal neurogenesis. Notably, at 2.0 Gy the pattern of early molecular and histopathological changes induced in the hippocampus at 15 days following PBI were similar in quality and quantity to the effects induced by WBI, thus providing a proof of principle of the existence of out-of-target radiation response in the hippocampus of conventional mice. We detected major alterations in DAG/IP3 and TGF-ß signaling pathways as well as in the expression of proteins involved in the regulation of long-term neuronal synaptic plasticity and synapse organization, coupled with defects in neural stem cells self-renewal in the hippocampal dentate gyrus. However, compared to the persistence of the WBI effects, most of the PBI effects were only transient and tended to decrease at 6 months post-irradiation, indicating important mechanistic difference. On the contrary, at low dose we identified a progressive accumulation of molecular defects that tended to manifest at later post-irradiation times. These data, indicating that both targeted and non-targeted radiation effects might contribute to the pathogenesis of hippocampal radiation-damage, have general implications for human health.


Asunto(s)
Irradiación Craneana , Hipocampo/metabolismo , Hipocampo/efectos de la radiación , Metaboloma , Neurogénesis/genética , Neurogénesis/efectos de la radiación , Proteoma , Transcriptoma , Animales , Biología Computacional/métodos , Irradiación Craneana/efectos adversos , Femenino , Regulación de la Expresión Génica , Inmunohistoquímica , Ratones , Dosis de Radiación , Transducción de Señal
11.
Int J Mol Sci ; 22(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668642

RESUMEN

Childhood ependymomas are heterogenous chemoresistant neoplasms arising from aberrant stem-like cells. Epigenome deregulation plays a pivotal role in ependymoma pathogenesis, suggesting that epigenetic modifiers hold therapeutic promise against this disease. Bromodomain and extraterminal domain (BET) proteins are epigenome readers of acetylated signals in histones and coactivators for oncogenic and stemness-related transcriptional networks, including MYC/MYCN (Proto-Oncogene, BHLH Transcritpion Factor)-regulated genes. We explored BET inhibition as an anticancer strategy in a panel of pediatric patient-derived ependymoma stem cell models by OTX015-mediated suppression of BET/acetylated histone binding. We found that ependymoma tissues and lines express BET proteins and their targets MYC and MYCN. In vitro, OTX015 reduced cell proliferation by inducing G0/G1-phase accumulation and apoptosis at clinically tolerable doses. Mechanistically, inhibitory p21 and p27 increased in a p53-independent manner, whereas the proliferative driver, phospho-signal transducer and activator of transcription 3 (STAT3), decreased. Upregulation of apoptosis-related proteins and survivin downregulation were correlated with cell line drug sensitivity. Minor alterations of MYC/MYCN expression were reported. In vivo, OTX015 significantly improved survival in 2/3 orthotopic ependymoma models. BET proteins represent promising targets for pharmaceutical intervention with OTX015 against ependymoma. The identification of predictive determinants of sensitivity may help identify ependymoma molecular subsets more likely to benefit from BET inhibitor therapies.


Asunto(s)
Acetanilidas/farmacología , Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Ependimoma/tratamiento farmacológico , Compuestos Heterocíclicos con 3 Anillos/farmacología , Proteína Proto-Oncogénica N-Myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Ependimoma/metabolismo , Ependimoma/patología , Humanos , Masculino , Ratones , Ratones Desnudos , Proteína Proto-Oncogénica N-Myc/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Comput Struct Biotechnol J ; 19: 1838-1847, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33758649

RESUMEN

Short Linear Motifs (SLiMs) are functional protein microdomains that typically mediate interactions between a short linear region in one protein and a globular domain in another. Surface Plasmon Resonance assays have been performed to determine the binding affinity between PDZ domain of wild type human PALS1 protein and tetradecapeptides representing the SLiMs sequences of SARS-CoV-1 and SARS-CoV-2 E proteins (E-SLiMs). SARS-CoV-2 E-SLiM binds to the human target protein with a higher affinity compared to SARS-CoV-1, showing a difference significantly greater than previously reported using the F318W mutant of PALS1 protein and shorter target peptides. Moreover, molecular dynamics simulations have provided clear evidence of the structural determinants driving this binding process. Specifically, the Arginine 69 residue in the SARS-CoV-2 E-SLiM is the key residue able to both enhance the specific polar interaction with negatively charged pockets of the PALS1 PDZ domain and reduce significantly the mobility of the viral peptide. These experimental and computational data are reinforced by the comparison of the interaction between the PALS1 PDZ domain with the natural ligand CRB1, as well as the corresponding E-SLiMs of other coronavirus members such as MERS and OCF43. Our results provide a model at the molecular level of the strategies used to mimic the endogenous SLiM peptide in the binding of the tight junctions of the host cell, explaining one of the possible reasons of the severity of the infection and pulmonary inflammation by SARS-CoV-2.

13.
Front Immunol ; 11: 585519, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343567

RESUMEN

Defibrotide (DFB) effects on different endothelial cell pathways have been investigated focusing on a limited number of genes or molecules. This study explored the modulation of the gene expression profile of steady-state or lipopolysaccharide (LPS)-activated endothelial cells, following the DFB exposure. Starting from differentially regulated gene expression datasets, we utilized the Ingenuity Pathway Analysis (IPA) to infer novel information about the activity of this drug. We found that effects elicited by LPS deeply differ depending on cells were exposed to DFB and LPS at the same time, or if the DFB priming occurs before the LPS exposure. Only in the second case, we observed a significant down-regulation of various pathways activated by LPS. In IPA, the pathways most affected by DFB were leukocyte migration and activation, vasculogenesis, and inflammatory response. Furthermore, the activity of DFB seemed to be associated with the modulation of six key genes, including matrix-metalloproteinases 2 and 9, thrombin receptor, sphingosine-kinase1, alpha subunit of collagen XVIII, and endothelial-protein C receptor. Overall, our findings support a role for DFB in a wide range of diseases associated with an exaggerated inflammatory response of endothelial cells.


Asunto(s)
Células Progenitoras Endoteliales/efectos de los fármacos , Fibrinolíticos/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Polidesoxirribonucleótidos/farmacología , Transcriptoma/efectos de los fármacos , Humanos , Lipopolisacáridos/farmacología
14.
J Exp Clin Cancer Res ; 39(1): 265, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33250051

RESUMEN

BACKGROUND: In spite of great progress in the surgical and clinical management, until now no significant improvement in overall survival of High-Grade Serous Ovarian Cancer (HGSOC) patients has been achieved. Important aspects for disease control remain unresolved, including unclear pathogenesis, high heterogeneity and relapse resistance after chemotherapy. Therefore, further research on molecular mechanisms involved in cancer progression are needed to find new targets for disease management. The Krüppel-like factors (KLFs) are a family of transcriptional regulators controlling several basic cellular processes, including proliferation, differentiation and migration. They have been shown to play a role in various cancer-relevant processes, in a context-dependent way. METHODS: To investigate a possible role of KLF family members as prognostic biomarkers, we carried out a bioinformatic meta-analysis of ovarian transcriptome datasets in different cohorts of late-stage HGSOC patients. In vitro cellular models of HGSOC were used for functional studies exploring the role of KLF7 in disease development and progression. Finally, molecular modelling and virtual screening were performed to identify putative KLF7 inhibitors. RESULTS: Bioinformatic analysis highlighted KLF7 as the most significant prognostic gene, among the 17 family members. Univariate and multivariate analyses identified KLF7 as an unfavourable prognostic marker for overall survival in late-stage TCGA-OV and GSE26712 HGSOC cohorts. Functional in vitro studies demonstrated that KLF7 can play a role as oncogene, driving tumour growth and dissemination. Mechanistic targets of KLF7 included genes involved in epithelial to mesenchymal transition, and in maintaining pluripotency and self-renewal characteristics of cancer stem cells. Finally, in silico analysis provided reliable information for drug-target interaction prediction. CONCLUSIONS: Results from the present study provide the first evidence for an oncogenic role of KLF7 in HGSOC, suggesting it as a promising prognostic marker and therapeutic target.


Asunto(s)
Cistadenocarcinoma Seroso/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Neoplasias Ováricas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/patología , Femenino , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología
15.
Microbes Infect ; 22(10): 592-597, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32891874

RESUMEN

The Envelope (E) protein of SARS-CoV-2 is the most enigmatic protein among the four structural ones. Most of its current knowledge is based on the direct comparison to the SARS E protein, initially mistakenly undervalued and subsequently proved to be a key factor in the ER-Golgi localization and in tight junction disruption. We compared the genomic sequences of E protein of SARS-CoV-2, SARS-CoV and the closely related genomes of bats and pangolins obtained from the GISAID and GenBank databases. When compared to the known SARS E protein, we observed a significant difference in amino acid sequence in the C-terminal end of SARS-CoV-2 E protein. Subsequently, in silico modelling analyses of E proteins conformation and docking provide evidences of a strengthened binding of SARS-CoV-2 E protein with the tight junction-associated PALS1 protein. Based on our computational evidences and on data related to SARS-CoV, we believe that SARS-CoV-2 E protein interferes more stably with PALS1 leading to an enhanced epithelial barrier disruption, amplifying the inflammatory processes, and promoting tissue remodelling. These findings raise a warning on the underestimated role of the E protein in the pathogenic mechanism and open the route to detailed experimental investigations.


Asunto(s)
COVID-19/metabolismo , Proteínas de la Membrana/química , Nucleósido-Fosfato Quinasa/química , SARS-CoV-2/química , Uniones Estrechas/química , Proteínas del Envoltorio Viral/química , Secuencia de Aminoácidos , Animales , COVID-19/genética , Quirópteros/virología , Bases de Datos Genéticas , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Nucleósido-Fosfato Quinasa/genética , Nucleósido-Fosfato Quinasa/metabolismo , Pangolines/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Uniones Estrechas/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
16.
Microbes Infect ; 22(4-5): 182-187, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32446902

RESUMEN

Envelope protein of coronaviruses is a structural protein existing in both monomeric and homo-pentameric form. It has been related to a multitude of roles including virus infection, replication, dissemination and immune response stimulation. In the present study, we employed an immunoinformatic approach to investigate the major immunogenic domains of the SARS-CoV-2 envelope protein and map them among the homologue proteins of coronaviruses with tropism for animal species that are closely inter-related with the human beings population all over the world. Also, when not available, we predicted the envelope protein structural folding and mapped SARS-CoV-2 epitopes. Envelope sequences alignment provides evidence of high sequence homology for some of the investigated virus specimens; while the structural mapping of epitopes resulted in the interesting maintenance of the structural folding and epitope sequence localization also in the envelope proteins scoring a lower alignment score. In line with the One-Health approach, our evidences provide a molecular structural rationale for a potential role of taxonomically related coronaviruses in conferring protection from SARS-CoV-2 infection and identifying potential candidates for the development of diagnostic tools and prophylactic-oriented strategies.


Asunto(s)
Betacoronavirus/metabolismo , Biología Computacional/métodos , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Neumonía Viral/inmunología , Neumonía Viral/virología , Proteínas del Envoltorio Viral/inmunología , Animales , Betacoronavirus/clasificación , Betacoronavirus/genética , Betacoronavirus/inmunología , COVID-19 , Proteínas de la Envoltura de Coronavirus , Mapeo Epitopo , Regulación Viral de la Expresión Génica , Humanos , Modelos Moleculares , Salud Única , Pandemias , Filogenia , Conformación Proteica , SARS-CoV-2 , Alineación de Secuencia , Análisis de Secuencia de Proteína
17.
Cancers (Basel) ; 12(4)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295169

RESUMEN

Long non-coding RNAs (lncRNAs) are emerging as regulators in cancer development and progression, and aberrant lncRNA profiles have been reported in several cancers. Here, we evaluated the potential of using the maternally expressed gene 3 (MEG3) tissue level as a prognostic marker in high-grade serous ovarian cancer (HGSOC), the most common and deadliest gynecologic malignancy. To the aim of the study, we measured MEG3 transcript levels in 90 pre-treatment peritoneal biopsies. We also investigated MEG3 function in ovarian cancer biology. We found that high MEG3 expression was independently associated with better progression-free (p = 0.002) and overall survival (p = 0.01). In vitro and in vivo preclinical studies supported a role for MEG3 as a tumor suppressor in HGSOC, possibly through modulation of the phosphatase and tensin homologue (PTEN) network. Overall, results from this study demonstrated that decreased MEG3 is a hallmark for malignancy and tumor progression in HGSOC.

18.
Sci Rep ; 9(1): 14019, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31570741

RESUMEN

The consideration of how a given technique affects results of experimental measurements is a must to achieve correct data interpretation. This might be challenging when it comes to measurements on biological systems, where it is unrealistic to have full control (e.g. through a software replica) of all steps in the measurement chain. In this work we address how the effectiveness of different radiation qualities in inducing biological damage can be assessed measuring DNA damage foci yields, only provided that artefacts related to the scoring technique are adequately considered. To this aim, we developed a unified stochastic modelling approach that, starting from radiation tracks, predicts both the induction, spatial distribution and complexity of DNA damage, and the experimental readout of foci when immunocytochemistry coupled to 2D fluorescence microscopy is used. The approach is used to interpret γ-H2AX data for photon and neutron exposures. When foci are reconstructed in the whole cell nucleus, we obtain information on damage characteristics "behind" experimental observations, as the average damage content of a focus. We reproduce how the detection technique affects experimental findings, e.g. contributing to the saturation of foci yields scored at 30 minutes after exposure with increasing dose and to the lack of dose dependence for yields at 24 hours.


Asunto(s)
Daño del ADN , Humanos , Interpretación de Imagen Asistida por Computador , Inmunohistoquímica , Microscopía Fluorescente , Procesos Estocásticos
19.
J Cancer Res Clin Oncol ; 145(9): 2211-2225, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31297606

RESUMEN

PURPOSE: To investigate the expression of biological markers in primary vulvar Paget's disease (VPD). METHODS: Forty-one patients referred to a single major Center for Gynecologic Oncology from January 2008 to June 2018 were enrolled retrospectively: 30 non-invasive-VPD and 11 invasive-VPD. A total number of 60 samples, from all the 41 vulvar sites (VS), 8 metastatic lymph node sites (MLS) and 11 successive recurrent disease in vulvar site (RVS), were tested for an immunohistochemical panel, including the following markers: PD-L1, CD3, MSH2, MSH6, MLH1, PMS2, HER2/neu, EGFR, p16, p53, Ki67, ER, PR, AR, VEGF and CD31. RESULTS: We found a positive PD-L1 in 10% of non-invasive-VPD and 27% of invasive-VPD (18% VS; 38% MLS). ER and AR were expressed respectively in more than 70% and 75% of all specimens. HER2/neu amplification was found in 21% of non-invasive-VPD and 45% of invasive-VPD (40% VS; 38% MLS). A machine learning cluster analysis identified three groups among non- invasive-VPD: cluster-1 with higher median ER expression (40%); cluster-3 with more frequent HER2/neu overexpression (46%). Among invasive-VPD, two clusters were found: the second with more frequent HER2/neu overexpression (67% vs. 0%) and nodal metastases (100% vs. 25%). Repeating the IHC panel on the correspondent MLS and RVS, it significantly changed, respectively, in 50% and 27%. CONCLUSIONS: This study reveals the expression of PDL-1 and ER and confirms the expression of HER2/AR in VPD; new bases are provided to design multicenter clinical trials on personalized target therapies.


Asunto(s)
Metaboloma , Proteínas de Neoplasias/metabolismo , Enfermedad de Paget Extramamaria/diagnóstico , Enfermedad de Paget Extramamaria/metabolismo , Neoplasias de la Vulva/diagnóstico , Neoplasias de la Vulva/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Inmunohistoquímica/métodos , Metástasis Linfática , Persona de Mediana Edad , Proteínas de Neoplasias/análisis , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Enfermedad de Paget Extramamaria/patología , Proteómica/métodos , Estudios Retrospectivos , Neoplasias de la Vulva/patología
20.
J Exp Clin Cancer Res ; 38(1): 279, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31242951

RESUMEN

BACKGROUND: A better understanding of locally advanced cervical cancer (LACC) is mandatory for further improving the rates of disease control, since a significant proportion of patients still fail to respond or undergo relapse after concurrent chemoradiation treatment (CRT), and survival for these patients has generally remained poor. METHODS: To identify specific markers of CRT response, we compared pretreatment biopsies from LACC patients with pathological complete response (sensitive) with those from patients showing macroscopic residual tumor (resistant) after neoadjuvant CRT, using a proteomic approach integrated with gene expression profiling. The study of the underpinning mechanisms of chemoradiation response was carried out through in vitro models of cervical cancer. RESULTS: We identified annexin A2 (ANXA2), N-myc downstream regulated gene 1 (NDRG1) and signal transducer and activator of transcription 1 (STAT1) as biomarkers of LACC patients' responsiveness to CRT. The dataset collected through qPCR on these genes was used as training dataset to implement a Random Forest algorithm able to predict the response of new patients to this treatment. Mechanistic investigations demonstrated the key role of the identified genes in the balance between death and survival of tumor cells. CONCLUSIONS: Our results define a predictive gene signature that can help in cervical cancer patient stratification, thus providing a useful tool towards more personalized treatment modalities.


Asunto(s)
Anexina A2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factor de Transcripción STAT1/metabolismo , Neoplasias del Cuello Uterino/terapia , Adulto , Anciano , Anexina A2/genética , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor , Proteínas de Ciclo Celular/genética , Quimioradioterapia , Cisplatino/uso terapéutico , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Persona de Mediana Edad , Terapia Neoadyuvante , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Tolerancia a Radiación , Factor de Transcripción STAT1/genética , Transcriptoma , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA