Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18802, 2024 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138329

RESUMEN

The presence of bacteria from the Dickeya spp. and Pectobacterium spp. in farmlands leads to global crop losses of over $420 million annually. Since 1982, the scientists have started to suspect that the development of disease symptoms in crops might be inhibited by bacteria present in the soil. Here, we characterized in terms of physicochemical properties and the composition of bacterial soil microbiota two fields differing, on the basis of long-term studies, in the occurrence of Dickeya spp.- and Pectobacterium spp.-triggered infections. Majority, i.e. 17 of the investigated physicochemical features of the soils collected from two fields of either low or high potato blackleg and soft rot diseases incidences turned out to be similar, in contrast to the observed 4 deviations in relation to Mg, Mn, organic C and organic substance contents. By performing microbial cultures and molecular diagnostics-based identification, 20 Pectobacterium spp. strains were acquired from the field showing high blackleg and soft rot incidences. In addition, 16S rRNA gene amplicon sequencing followed by bioinformatic analysis revealed differences at various taxonomic levels in the soil bacterial microbiota of the studied fields. We observed that bacteria from the genera Bacillus, Rumeliibacillus, Acidobacterium and Gaiella turned out to be more abundant in the soil samples originating from the field of low comparing to high frequency of pectinolytic bacterial infections. In the herein presented case study, it is shown for the first time that the composition of bacterial soil microbiota varies between two fields differing in the incidences of soft rot and blackleg infections.


Asunto(s)
Microbiota , Enfermedades de las Plantas , ARN Ribosómico 16S , Microbiología del Suelo , Solanum tuberosum , Solanum tuberosum/microbiología , Enfermedades de las Plantas/microbiología , ARN Ribosómico 16S/genética , Pectobacterium/genética , Pectobacterium/aislamiento & purificación , Suelo/química , Filogenia , Dickeya/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación
2.
Molecules ; 29(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930977

RESUMEN

Specialized chemicals are used for intensifying food production, including boosting meat and crop yields. Among the applied formulations, antibiotics and pesticides pose a severe threat to the natural balance of the ecosystem, as they either contribute to the development of multidrug resistance among pathogens or exhibit ecotoxic and mutagenic actions of a persistent character. Recently, cold atmospheric pressure plasmas (CAPPs) have emerged as promising technologies for degradation of these organic pollutants. CAPP-based technologies show eco-friendliness and potency for the removal of organic pollutants of diverse chemical formulas and different modes of action. For this reason, various types of CAPP-based systems are presented in this review and assessed in terms of their constructions, types of discharges, operating parameters, and efficiencies in the degradation of antibiotics and persistent organic pollutants. Additionally, the key role of reactive oxygen and nitrogen species (RONS) is highlighted. Moreover, optimization of the CAPP operating parameters seems crucial to effectively remove contaminants. Finally, the CAPP-related paths and technologies are further considered in terms of biological and environmental effects associated with the treatments, including changes in antibacterial properties and toxicity of the exposed solutions, as well as the potential of the CAPP-based strategies for limiting the spread of multidrug resistance.


Asunto(s)
Presión Atmosférica , Gases em Plasma , Gases em Plasma/química , Contaminantes Ambientales/química , Industria de Alimentos , Antibacterianos/química , Antibacterianos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Compuestos Orgánicos/química
3.
Sci Rep ; 13(1): 18863, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914755

RESUMEN

Dickeya solani is an economically significant pectinolytic phytopathogen belonging to the Pectobacteriaceae family, which causes soft rot and blackleg diseases. Despite its notable impact on global potato production, there are no effective methods to control this pest. Here, we undertook a phyloproteomic study on 20 D. solani strains, of various origin and year of isolation, with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) supported by an in-depth characterization of the strains in terms of the virulence-associated phenotype. In spite of high homogeneity in this species, we herein revealed for the first time intraspecies variation in the MALDI-TOF MS protein profiles among the studied D. solani isolates. Finally, representative mass spectra for the four delineated clades are presented. A majority of the analysed D. solani strains showed high virulence potential, while two strains stood out in their growth dynamics, virulence factors production and ability to macerate plant tissue. Nonetheless, the metabolic profiles of D. solani strains turned out to be uniform, except for gelatinase activity. Given that all D. solani isolates distinctly grouped from the other Dickeya species in the MALDI-TOF MS analysis, there is strong evidence supporting the potential routine use of this method for fast and reliable to-species identification of D. solani isolates of environmental origin.


Asunto(s)
Enterobacteriaceae , Gammaproteobacteria , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Enterobacteriaceae/genética , Dickeya
4.
Carbohydr Res ; 524: 108743, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36669445

RESUMEN

Utilizing sugar, methylation, and absolute configurations analyses as well as NMR spectroscopy, the chemical repeating unit of the O-specific polysaccharide of Pectobacteriumversatile CFBP6051T was identified as: The polymer contains residues of an unusual, higher-branched monosaccharide, named erwiniose (3,6,8-trideoxy-4-C-(R-1-hydroxyethyl)-d-gulo-octose). Comparison of the P. versatile CFBP6051T O-polysaccharide with those isolated from strains of other Pectobacterium species indicated high differentiation in their structures within this genus.


Asunto(s)
Monosacáridos , Pectobacterium , Secuencia de Carbohidratos , Pectobacterium/química , Antígenos O/química , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...