Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Biosensors (Basel) ; 14(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38248383

RESUMEN

Label-free electrochemical biosensors have many desirable characteristics in terms of miniaturization, scalability, digitization, and other attributes associated with point-of-care (POC) applications. In the era of COVID-19 and pandemic preparedness, further development of such biosensors will be immensely beneficial for rapid testing and disease management. Label-free electrochemical biosensors often employ [Fe(CN)6]-3/4 redox probes to detect low-concentration target analytes as they dramatically enhance sensitivity. However, such Faradaic-based sensors are reported to experience baseline signal drift, which compromises the performance of these devices. Here, we describe the use of a mecaptohexanoic (MHA) self-assembled monolayer (SAM) modified Au-interdigitated electrode arrays (IDA) to investigate the origin of the baseline signal drift, developed a protocol to resolve the issue, and presented insights into the underlying mechanism on the working of label-free electrochemical biosensors. Using this protocol, we demonstrate the application of MHA SAM-modified Au-IDA for POC analysis of human serum samples. We describe the use of a label-free electrochemical biosensor based on covalently conjugated SARS-CoV-2 spike protein for POC detection of COVID-19 antibodies. The test requires a short incubation time (10 min), and has a sensitivity of 35.4/decade (35.4%/10 ng mL-1) and LOD of 21 ng/mL. Negligible cross reactivity to seasonal human coronavirus or other endogenous antibodies was observed. Our studies also show that Faradaic biosensors are ~17 times more sensitive than non-Faradaic biosensors. We believe the work presented here contributes to the fundamental understanding of the underlying mechanisms of baseline signal drift and will be applicable to future development of electrochemical biosensors for POC applications.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , COVID-19/diagnóstico , Inmunoensayo , Sistemas de Atención de Punto , SARS-CoV-2 , Anticuerpos Monoclonales Humanizados , Electrodos , Oro
2.
Biosens Bioelectron X ; 11: 100176, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35692737

RESUMEN

A novel test strategy is proposed with dual-modality detection techniques for COVID-19 antibody detection. The full-length S protein of SARS-CoV-2 was chemically immobilized on a glass surface to capture anti-SARS-CoV-2 IgG in patient serum and was detected through either Electrochemical Impedance Spectroscopy (EIS) or fluorescence imaging with labeled secondary antibodies. Gold nanoparticles conjugated with protein G were used as the probe and the bound GNP-G was detected through EIS measurements. Anti-human-IgG conjugated with the fluorescent tag Alexa Fluor 488 was used as the probe for fluorescence imaging. Clinical SARS-CoV-2 IgG positive serum and negative controls were used to validate both modalities. For fluorescence-based detection, a high sensitivity was noticed with a quantification range of 0.01-0.1 A.U.C. and a LOD of 0.004 A.U.C. This study demonstrates the possibility of utilizing different measurement techniques in conjunction for improved COVID-19 serology testing.

3.
Biosens Bioelectron ; 213: 114476, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35716642

RESUMEN

Coronavirus disease 2019 (COVID-19) has caused significant global morbidity and mortality. The serology test that detects antibodies against the disease causative agent, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has often neglected value in supporting immunization policies and therapeutic decision-making. The ELISA-based antibody test is time-consuming and bulky. This work described a gold micro-interdigitated electrodes (IDE) biosensor for COVID antibody detection based on Electrochemical Impedance Spectroscopy (EIS) responses. The IDE architecture allows easy surface modification with the viral structure protein, Spike (S) protein, in the gap of the electrode digits to selectively capture anti-S antibodies in buffer solutions or human sera. Two strategies were employed to resolve the low sensitivity issue of non-faradic impedimetric sensors and the sensor fouling phenomenon when using the serum. One uses secondary antibody-gold nanoparticle (AuNP) conjugates to further distinguish anti-S antibodies from the non-specific binding and obtain a more significant impedance change. The second strategy consists of increasing the concentration of target antibodies in the gap of IDEs by inducing an AC electrokinetic effect such as dielectrophoresis (DEP). AuNP and DEP methods reached a limit of detection of 200 ng/mL and 2 µg/mL, respectively using purified antibodies in buffer, while the DEP method achieved a faster testing time of only 30 min. Both strategies could qualitatively distinguish COVID-19 antibody-positive and -negative sera. Our work, especially the impedimetric detection of COVID-19 antibodies under the assistance of the DEP force presents a promising path toward rapid, point-of-care solutions for COVID-19 serology tests.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanopartículas del Metal , Técnicas Biosensibles/métodos , COVID-19/diagnóstico , Electrodos , Oro/química , Humanos , Nanopartículas del Metal/química , SARS-CoV-2
4.
Vaccine ; 39(47): 6843-6851, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34702621

RESUMEN

BACKGROUND: Children play an important role in the transmission of influenza. The best choice of vaccine to achieve both direct and indirect protection is uncertain. The objective of the study was to test whether vaccinating children with MF59 adjuvanted trivalent influenza vaccine (aTIV) can reduce influenza in children and their extended households compared to inactivated quadrivalent vaccine (QIV). METHODS: We conducted a cluster randomized trial in 42 Hutterite colonies in Alberta and Saskatchewan. Colonies were randomized such that children were assigned in a blinded manner to receive aTIV (0.25 ml of pediatric aTIV for ages 6 months to < 36 months or 0.5 ml for ages ≥ 36 months to 6 years) or 0.5 ml of QIV. Participants included 424 children aged 6 months to 6 years who received the study vaccine and 1246 family cluster members who did not receive the study vaccine. The primary outcome was confirmed influenza A and B infection using a real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay. An intent to treat analysis was used. Data were collected from January 2017 to June 2019. RESULTS: The mean percentage of children who received study vaccine was 62% for aTIV colonies and 74% for QIV colonies. There were 66 (3.4%) with RT-PCR confirmed influenza A and B in the aTIV colonies (children and family clusters) versus 93 (4.4%) in the QIV colonies, hazard ratio (HR) 0.78 (95 %CI 0.36-1.71). Of these, 48 (2.5%) in the aTIV colonies and 76 (3.6%) in the QIV colonies had influenza A, HR 0.69, (95 %CI 0.29-1.66) while 18 (0.9%) and 17 (0.8%) in the aTIV versus QIV colonies respectively had influenza B, HR 1.22, (95 %CI 0.20-7.41). In children who received study vaccine, there were 5 Influenza A infections in the aTIV colonies (1.1%) compared to 30 (5.8%) in the QIV colonies, relative efficacy of 80%, HR 0.20, (95 %CI 0.06-0.66). Adverse events were significantly more common among children who received aTIV. No serious vaccine adverse events were reported. CONCLUSION: Vaccinating children with aTIV compared to QIV resulted in similar community RT-PCR confirmed influenza illness and led to significant protection against influenza A in children.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Adyuvantes Inmunológicos , Anticuerpos Antivirales , Niño , Humanos , Gripe Humana/prevención & control , Vacunas Combinadas , Vacunas de Productos Inactivados
5.
Transbound Emerg Dis ; 67(1): 80-97, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31379093

RESUMEN

The genus Capripoxvirus in the subfamily Chordopoxvirinae, family Poxviridae, comprises sheeppox virus (SPPV), goatpox virus (GTPV) and lumpy skin disease virus (LSDV), which cause the eponymous diseases across parts of Africa, the Middle East and Asia. These diseases cause significant economic losses and can have a devastating impact on the livelihoods and food security of small farm holders. So far, only live classically attenuated SPPV, GTPV and LSDV vaccines are commercially available and the history, safety and efficacy of many have not been well established. Here, we report 13 new capripoxvirus genome sequences, including the hairpin telomeres, from both pathogenic field isolates and vaccine strains. We have also updated the genome annotations to incorporate recent advances in our understanding of poxvirus biology. These new genomes and genes grouped phenetically with other previously sequenced capripoxvirus strains, and these new alignments collectively identified several recurring alterations in genes thought to modulate virulence and host range. In particular, some of the many large capripoxvirus ankyrin and kelch-like proteins are commonly mutated in vaccine strains, while the variola virus B22R-like gene homolog has also been disrupted in many vaccine isolates. Among these vaccine isolates, frameshift mutations are especially common and clearly present a risk of reversion to wild type in vaccines bearing these mutations. A consistent pattern of gene inactivation from LSDV to GTPV and then SPPV is also observed, much like the pattern of gene loss in orthopoxviruses, but, rather surprisingly, the overall genome size of ~150 kbp remains relatively constant. These data provide new insights into the evolution of capripoxviruses and the determinants of pathogenicity and host range. They will find application in the development of new vaccines with better safety, efficacy and trade profiles.


Asunto(s)
Capripoxvirus/genética , Variación Genética , Genoma Viral/genética , Especificidad del Huésped/genética , Infecciones por Poxviridae/veterinaria , Enfermedades de las Ovejas/virología , África , Animales , Asia , Evolución Biológica , Capripoxvirus/inmunología , Capripoxvirus/patogenicidad , Capripoxvirus/fisiología , Células Cultivadas , Especiación Genética , India , Masculino , Medio Oriente , Mutación , Infecciones por Poxviridae/prevención & control , Infecciones por Poxviridae/virología , Ovinos , Enfermedades de las Ovejas/prevención & control , Testículo/virología , Vacunas Virales/inmunología , Virulencia
6.
Expert Rev Vaccines ; 18(8): 755-764, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31288585

RESUMEN

Introduction: Seasonal influenza poses a major risk to the health of the population. Optimal strategies for influenza vaccination can help to reduce this risk. Areas covered: Systematic evaluations of the burden of influenza are first reviewed. Key meta-analysis, randomized trials, and observational studies are critically reviewed to provide the best estimates of the efficacy of influenza vaccine. The concept of herd effect is first introduced and this is followed by the rationale and the evidence to support herd effect that can be provided with strategic use of influenza vaccination in populations. Challenges including the effect of repeated influenza vaccination and vaccine hesitancy are reviewed. The citations were selected by the authors based on PubMed searches of the literature. Expert opinion: Efforts to develop new vaccines, including a universal vaccine, offer the best prospects for improved herd effect. Increasing uptake in new populations can increase likelihood of a herd effect.


Asunto(s)
Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Vacunación/métodos , Humanos , Vacunas contra la Influenza/inmunología , Ensayos Clínicos Controlados Aleatorios como Asunto , Estaciones del Año , Negativa a la Vacunación
7.
J Virol ; 93(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30518648

RESUMEN

The life cycle of influenza A virus (IAV) is modulated by various cellular host factors. Although previous studies indicated that IAV infection is controlled by HDAC6, the deacetylase involved in the regulation of PA remained unknown. Here, we demonstrate that HDAC6 acts as a negative regulator of IAV infection by destabilizing PA. HDAC6 binds to and deacetylates PA, thereby promoting the proteasomal degradation of PA. Based on mass spectrometric analysis, Lys(664) of PA can be deacetylated by HDAC6, and the residue is crucial for PA protein stability. The deacetylase activity of HDAC6 is required for anti-IAV activity, because IAV infection was enhanced due to elevated IAV RNA polymerase activity upon HDAC6 depletion and an HDAC6 deacetylase dead mutant (HDAC6-DM; H216A, H611A). Finally, we also demonstrate that overexpression of HDAC6 suppresses IAV RNA polymerase activity, but HDAC6-DM does not. Taken together, our findings provide initial evidence that HDAC6 plays a negative role in IAV RNA polymerase activity by deacetylating PA and thus restricts IAV RNA transcription and replication.IMPORTANCE Influenza A virus (IAV) continues to threaten global public health due to drug resistance and the emergence of frequently mutated strains. Thus, it is critical to find new strategies to control IAV infection. Here, we discover one host protein, HDAC6, that can inhibit viral RNA polymerase activity by deacetylating PA and thus suppresses virus RNA replication and transcription. Previously, it was reported that IAV can utilize the HDAC6-dependent aggresome formation mechanism to promote virus uncoating, but HDAC6-mediated deacetylation of α-tubulin inhibits viral protein trafficking at late stages of the virus life cycle. These findings together will contribute to a better understanding of the role of HDAC6 in regulating IAV infection. Understanding the molecular mechanisms of HDAC6 at various periods of viral infection may illuminate novel strategies for developing antiviral drugs.


Asunto(s)
Histona Desacetilasa 6/metabolismo , Virus de la Influenza A/metabolismo , Células A549 , Acetilación , Animales , Antivirales/farmacología , Línea Celular , ARN Polimerasas Dirigidas por ADN/metabolismo , Perros , Células HEK293 , Histona Desacetilasa 6/fisiología , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Virus de la Influenza A/patogenicidad , Gripe Humana/genética , Gripe Humana/inmunología , Células de Riñón Canino Madin Darby , ARN Viral/metabolismo , Proteínas Virales/metabolismo , Replicación Viral/genética
8.
Immunology ; 153(4): 532-544, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29068058

RESUMEN

The concept of dendritic cell (DC) maturation generally refers to the changes in morphology and function of DCs. Conventionally, DC maturity is based on three criteria: loss of endocytic ability, gain of high-level capacity to present antigens and induce proliferation of T cells, and mobility of DCs toward high concentrations of CCL19. Impairment of DC maturation has been suggested as the main reason for infectivity or chronicity of several infectious agents. In the case of hepatitis C virus, this has been a matter of controversy for the last two decades. However, insufficient attention has been paid to the method of ex vivo maturation as the possible source of such controversies. We previously reported striking differences between DCs matured with different methods, so we propose the use of a standard quantitative index to determine the level of maturity in DCs as an approach to compare results from different studies. We designed and formulated a mathematically calculated index to numerically define the level of maturity based on experimental data from ex vivo assays. This introduces a standard maturation index (SMI) and weighted maturation index (WMI) based on strictly standardized mean differences between different methods of generating mature DCs. By calculating an SMI and a WMI, numerical values were assigned to the level of maturity achieved by DCs matured with different methods. SMI and WMI could be used as a standard tool to compare diversely generated mature DCs and so better interpret outcomes of ex vivo and in vivo studies with mature DCs.


Asunto(s)
Células Dendríticas/citología , Células Dendríticas/inmunología , Modelos Estadísticos , Citometría de Flujo , Voluntarios Sanos , Humanos
9.
Nanomedicine ; 13(7): 2169-2178, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28579436

RESUMEN

The most promising strategy to sustainably prevent infectious diseases is vaccination. However, emerging as well as re-emerging diseases still constitute a considerable threat. Furthermore, lack of compliance and logistic constrains often result in the failure of vaccination campaigns. To overcome these hurdles, novel vaccination strategies need to be developed, which fulfill maximal safety requirements, show maximal efficiency and are easy to administer. Mucosal vaccines constitute promising non-invasive approaches able to match these demands. Here we demonstrate that nanoparticle (polyphosphazenes)-based vaccine formulations including c-di-AMP as adjuvant, cationic innate defense regulator peptides (IDR) and ovalbumin (OVA) as model antigen were able to stimulate strong humoral and cellular immune responses, which conferred protection against the OVA expressing influenza strain A/WSN/OVAI (H1N1). The presented results confirm the potency of nanoparticle-based vaccine formulations to deliver antigens across the mucosal barrier, but also demonstrate the necessity to include adjuvants to stimulate efficient antigen-specific immune responses.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Fosfatos de Dinucleósidos/administración & dosificación , Vacunas contra la Influenza/administración & dosificación , Nanopartículas/química , Compuestos Organofosforados/química , Infecciones por Orthomyxoviridae/prevención & control , Ovalbúmina/administración & dosificación , Polímeros/química , Adyuvantes Inmunológicos/uso terapéutico , Administración Intranasal , Animales , Fosfatos de Dinucleósidos/uso terapéutico , Femenino , Humanos , Inmunidad Celular , Inmunidad Humoral , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/inmunología , Gripe Humana/prevención & control , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Ovalbúmina/uso terapéutico , Vacunación/métodos
10.
Vaccine ; 35(35 Pt A): 4486-4489, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28599794

RESUMEN

Adjuvants are crucial components of many vaccines. They are used to improve the immunogenicity of vaccines with the aim of conferring long-term protection, to enhance the efficacy of vaccines in newborns, elderly or immunocompromised persons, and to reduce the amount of antigen or the number of doses required to elicit effective immunity. Novel combination adjuvants have been tested in both candidate animals and humans vaccines and have generated encouraging results. Recently, we developed a combination adjuvant platform (TriAdj) comprising of three components, namely a TLR agonist, either polyI:C or CpG oligodeoxynucleotides (ODN), host defense peptide and polyphosphazene. This adjuvant platform is stable and highly effective in a wide range of animal and human vaccines tested in mice, cotton rats, pigs, sheep, and koalas. TriAdj with various vaccines antigens induced effective long-term humoral and cellular immunity. Moreover, the adjuvant platform is suitable for maternal immunization and highly effective in neonates even in the presence of maternal antibodies. This novel vaccine platform, offers excellent opportunity for use in present and future generations of vaccines against multiple infectious agents and targets challenging populations.


Asunto(s)
Adyuvantes Inmunológicos/química , Oligodesoxirribonucleótidos/química , Compuestos Organofosforados/química , Polímeros/química , Vacunas Combinadas/química , Vacunas Combinadas/inmunología , Animales , Diseño de Fármacos , Femenino , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunidad Materno-Adquirida/inmunología , Lactante , Embarazo , Vacunas Combinadas/síntesis química
11.
Influenza Other Respir Viruses ; 11(3): 254-262, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28207989

RESUMEN

BACKGROUND: Patterns of influenza molecular viral shedding following influenza infection have been well established; predictors of viral shedding however remain uncertain. OBJECTIVES: We sought to determine factors associated with peak molecular viral load, duration of shedding, and viral area under the curve (AUC) in children and adult Hutterite colony members with laboratory-confirmed influenza. METHODS: A cohort study was conducted in Hutterite colonies in Alberta, Canada. Flocked nasal swabs were collected during three influenza seasons (2007-2008 to 2009-2010) from both symptomatic and asymptomatic individuals infected with influenza. Samples were tested by real-time reverse-transcription polymerase chain reaction for influenza A and influenza B, and the viral load was determined for influenza A-positive samples. RESULTS: For seasonal H1N1, younger age was associated with a larger AUC, female sex was associated with decreased peak viral load and reduced viral shedding duration, while the presence of comorbidity was associated with increased peak viral load. For H3N2, younger age was associated with increased peak viral load and increased AUC. For pandemic H1N1, younger age was associated with increased peak viral load and increased viral AUC, female sex was associated with reduced peak viral load, while inapparent infection was associated with reduced peak viral load, reduced viral shedding duration, and reduced viral AUC. CONCLUSIONS: Patterns of molecular viral shedding vary by age, sex, comorbidity, and the presence of symptoms. Predictor variables vary by influenza A subtype.


Asunto(s)
Gripe Humana/virología , Orthomyxoviridae/fisiología , Esparcimiento de Virus , Adolescente , Adulto , Alberta/epidemiología , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/fisiología , Gripe Humana/epidemiología , Masculino , Persona de Mediana Edad , Orthomyxoviridae/clasificación , Orthomyxoviridae/genética , Orthomyxoviridae/aislamiento & purificación , Estaciones del Año , Carga Viral , Adulto Joven
12.
Infect Immun ; 85(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28167667

RESUMEN

Maternal vaccination represents a potential strategy to protect both the mother and the offspring against life-threatening infections. This protective role has mainly been associated with antibodies, but the role of cell-mediated immunity, in particular passively transferred cytokines, is not well understood. Here, using a pertussis model, we have demonstrated that immunization of pregnant sows with heat-inactivated bacteria leads to induction of a wide range of cytokines (e.g., tumor necrosis factor alpha [TNF-α], gamma interferon [IFN-γ], interleukin-6 [IL-6], IL-8, and IL-12/IL-23p40) in addition to pertussis-specific antibodies. These cytokines can be detected in the sera and colostrum/milk of vaccinated sows and subsequently were detected at significant levels in the serum and bronchoalveolar lavage fluid of piglets born to vaccinated sows together with pertussis-specific antibodies. In contrast, active vaccination of newborn piglets with heat-inactivated bacteria induced high levels of specific IgG and IgA but no cytokines. Although the levels of antibodies in vaccinated piglets were comparable to those of passively transferred antibodies, no protection against Bordetella pertussis infection was observed. Thus, our results demonstrate that a combination of passively transferred cytokines and antibodies is crucial for disease protection. The presence of passively transferred cytokines/antibodies influences the cytokine secretion ability of splenocytes in the neonate, which provides novel evidence that maternal immunization can influence the newborn's cytokine milieu and may impact immune cell differentiation (e.g., Th1/Th2 phenotype). Therefore, these maternally derived cytokines may play an essential role both as mediators of early defense against infections and possibly as modulators of the immune repertoire of the offspring.


Asunto(s)
Bordetella pertussis/inmunología , Citocinas/administración & dosificación , Inmunidad Materno-Adquirida , Inmunización Pasiva , Tos Ferina/inmunología , Tos Ferina/microbiología , Animales , Animales Recién Nacidos , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Citocinas/biosíntesis , Citocinas/sangre , Femenino , Pulmón/patología , Embarazo , Bazo/inmunología , Bazo/metabolismo , Porcinos , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología
13.
PLoS One ; 11(12): e0167281, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27977707

RESUMEN

BACKGROUND: An earlier cluster randomized controlled trial (RCT) of Hutterite colonies had shown that if more than 80% of children and adolescents were immunized with influenza vaccine there was a statistically significant reduction in laboratory-confirmed influenza among all unimmunized community members. We assessed the impact of this intervention for two additional influenza seasonal periods. METHODS: Follow-up data for two influenza seasonal periods of a cluster randomized trial involving 1053 Canadian children and adolescents aged 36 months to 15 years in Season 2 and 1014 in Season 3 who received the study vaccine, and 2805 community members in Season 2 and 2840 in Season 3 who did not receive the study vaccine. Follow-up for Season 2 began November 18, 2009 and ended April 25, 2010 while Season 3 extended from December 6, 2010 and ended May 27, 2011. Children were randomly assigned in a blinded manner according to community membership to receive either inactivated trivalent influenza vaccine or hepatitis A. The primary outcome was confirmed influenza A and B infection using RT-PCR assay. Due to the outbreak of 2009 H1N1 pandemic, data in Season 2 were excluded for analysis. RESULTS: For an analysis of the combined Season 1 and Season 3 data, among non-recipients (i.e., participants who did not receive study vaccines), 66 of the 2794 (2.4%) participants in the influenza vaccine colonies and 121 of the 2301 (5.3%) participants in the hepatitis A colonies had influenza confirmed by RT-PCR, for a protective effectiveness of 60% (95% CI, 6% to 83%; P = 0.04); among all study participants (i.e., including both those who received study vaccine and those who did not), 125 of the 3806 (3.3%) in the influenza vaccine colonies and 239 of the 3243 (7.4%) in the hepatitis A colonies had influenza confirmed by RT-PCR, for a protective effectiveness of 63% (95% CI, 5% to 85%; P = 0.04). CONCLUSION: Immunizing children and adolescents with inactivated influenza vaccine can offer a protective effect among unimmunized community members for influenza A and B together when considered over multiple years of seasonal influenza. TRIAL REGISTRATION: Clinicaltrials.gov NCT00877396.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Adolescente , Canadá , Niño , Preescolar , Brotes de Enfermedades , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Masculino , Resultado del Tratamiento
14.
Ann Intern Med ; 165(9): 617-624, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27538259

RESUMEN

BACKGROUND: Whether vaccinating children with intranasal live attenuated influenza vaccine (LAIV) is more effective than inactivated influenza vaccine (IIV) in providing both direct protection in vaccinated persons and herd protection in unvaccinated persons is uncertain. Hutterite colonies, where members live in close-knit, small rural communities in which influenza virus infection regularly occurs, offer an opportunity to address this question. OBJECTIVE: To determine whether vaccinating children and adolescents with LAIV provides better community protection than IIV. DESIGN: A cluster randomized blinded trial conducted between October 2012 and May 2015 over 3 influenza seasons. (ClinicalTrials.gov: NCT01653015). SETTING: 52 Hutterite colonies in Alberta and Saskatchewan, Canada. PARTICIPANTS: 1186 Canadian children and adolescents aged 36 months to 15 years who received the study vaccine and 3425 community members who did not. INTERVENTION: Children were randomly assigned according to community in a blinded manner to receive standard dosing of either trivalent LAIV or trivalent IIV. MEASUREMENTS: The primary outcome was reverse transcriptase polymerase chain reaction-confirmed influenza A or B virus in all participants (vaccinated children and persons who did not receive the study vaccine). RESULTS: Mean vaccine coverage among children in the LAIV group was 76.9% versus 72.3% in the IIV group. Influenza virus infection occurred at a rate of 5.3% (295 of 5560 person-years) in the LAIV group versus 5.2% (304 of 5810 person-years) in the IIV group. The hazard ratio comparing LAIV with IIV for influenza A or B virus was 1.03 (95% CI, 0.85 to 1.24). LIMITATION: The study was conducted in Hutterite communities, which may limit generalizability. CONCLUSION: Immunizing children with LAIV does not provide better community protection against influenza than IIV. PRIMARY FUNDING SOURCE: The Canadian Institutes for Health Research.


Asunto(s)
Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Adolescente , Canadá/epidemiología , Niño , Preescolar , Humanos , Inmunidad Colectiva , Vacunas contra la Influenza/efectos adversos , Gripe Humana/epidemiología , Población Rural , Vacunación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/efectos adversos , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos
15.
Zebrafish ; 13 Suppl 1: S153-63, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27248438

RESUMEN

The zebrafish model system is helping researchers improve the health and welfare of people and animals and has become indispensable for advancing biomedical research. As genetic engineering is both resource intensive and time-consuming, sharing successfully developed genetically modified zebrafish lines throughout the international community is critical to research efficiency and to maximizing the millions of dollars in research funding. New restrictions on importation of zebrafish into Canada based on putative susceptibility to infection by the spring viremia of carp virus (SVCV) have been imposed on the scientific community. In this commentary, we review the disease profile of SVCV in fish, discuss the findings of the Canadian government's scientific assessment, how the interpretations of their assessment differ from that of the Canadian research community, and describe the negative impact of these regulations on the Canadian research community and public as it pertains to protecting the health of Canadians.


Asunto(s)
Comercio/legislación & jurisprudencia , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/transmisión , Regulación Gubernamental , Infecciones por Rhabdoviridae/veterinaria , Pez Cebra , Animales , Canadá , Enfermedades de los Peces/virología , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/prevención & control , Infecciones por Rhabdoviridae/transmisión , Infecciones por Rhabdoviridae/virología
16.
Vaccine ; 34(7): 923-32, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26776470

RESUMEN

BACKGROUND: Therapeutic vaccination is a novel treatment approach for chronic hepatitis B, but only had limited success so far. We hypothesized that optimized vaccination schemes have increased immunogenicity, and aimed at increasing therapeutic hepatitis B vaccine efficacy. METHODS: Modified Vaccinia virus Ankara (MVA) expressing hepatitis B virus (HBV) antigens was used to boost protein-prime vaccinations in wildtype and HBV-transgenic (HBVtg) mice. RESULTS: Protein-prime/MVA-boost vaccination was able to overcome HBV-specific tolerance in HBVtg mice with low and medium but not with high antigenemia. HBV-specific antibody titers, CD8+ T-cell frequencies and polyfunctionality inversely correlated with HBV antigen levels. However, optimization of the adjuvant formulation, increasing the level of antigen expression and utilization of HBsAg of heterologous subtype induced HBV-specific CD8+ and CD4+ T-cells and neutralizing antibodies even in high-antigenemic HBVtg mice. CONCLUSIONS: Our results indicate that high HBV antigen levels limit the immunological responsiveness to therapeutic vaccination but optimization of the vaccine formulation can overcome tolerance even in the presence of high antigenemia. These findings have important implications for the development of future therapeutic hepatitis B vaccination strategies and potentially also for the stratification of chronic hepatitis B patients for therapeutic vaccination.


Asunto(s)
Vacunas contra Hepatitis B/inmunología , Hepatitis B/prevención & control , Tolerancia Inmunológica , Virus Vaccinia , Animales , Anticuerpos Neutralizantes/sangre , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Anticuerpos contra la Hepatitis B/sangre , Antígenos del Núcleo de la Hepatitis B/inmunología , Antígenos de Superficie de la Hepatitis B/sangre , Antígenos de Superficie de la Hepatitis B/inmunología , Antígenos e de la Hepatitis B/sangre , Inmunización Secundaria , Ratones Endogámicos C57BL , Ratones Transgénicos , Pruebas de Neutralización
17.
Antiviral Res ; 123: 39-49, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26341190

RESUMEN

Sheep and goat pox continue to be important livestock diseases that pose a major threat to the livestock industry in many regions in Africa and Asia. Currently, several live attenuated vaccines are available and used in endemic countries to control these diseases. One of these is a partially attenuated strain of lumpy skin disease virus (LSDV), KS-1, which provides cross-protection against both sheep pox and goat pox. However, when used in highly stressed dairy cattle to protect against lumpy skin disease (LSD) the vaccine can cause clinical disease. In order to develop safer vaccines effective against all three diseases, a pathogenic strain of LSDV (Warmbaths [WB], South Africa) was attenuated by removing a putative virulence factor gene (IL-10-like) using gene knockout (KO) technology. This construct (LSDV WB005KO) was then evaluated as a vaccine for sheep and goats against virulent capripoxvirus challenge. Sheep and goats were vaccinated with the construct and the animals were observed for 21days. The vaccine appeared to be safe, and did not cause disease, although it induced minor inflammation at the injection site similar to that caused by other attenuated sheep and goat pox vaccines. In addition, no virus replication was detected in blood, oral or nasal swabs using real-time PCR following vaccination and low levels of neutralising antibodies were detected in both sheep and goats. Leukocytes isolated from vaccinated animals following vaccination elicited capripoxvirus-specific IFN-γ secretion, suggesting that immunity was also T-cell mediated. Following challenge with virulent capripoxvirus, vaccinated sheep and goats were found to be completely protected and exhibited no clinical disease. Furthermore, real-time PCR of blood samples at various time points suggested that viremia was absent in both groups of vaccinated animals, as opposed to capripoxvirus-related clinical disease and viremia observed in the unvaccinated animals. These findings suggest that this novel knockout strain of LSDV has potential as a vaccine to protect livestock against sheep pox and goat pox.


Asunto(s)
Enfermedades de las Cabras/prevención & control , Interleucina-10/deficiencia , Virus de la Dermatosis Nodular Contagiosa/inmunología , Infecciones por Poxviridae/veterinaria , Enfermedades de las Ovejas/prevención & control , Proteínas Virales/genética , Vacunas Virales/inmunología , Animales , Técnicas de Inactivación de Genes , Enfermedades de las Cabras/inmunología , Enfermedades de las Cabras/virología , Cabras , Interferón gamma/metabolismo , Leucocitos Mononucleares/inmunología , Virus de la Dermatosis Nodular Contagiosa/genética , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/prevención & control , Ovinos , Enfermedades de las Ovejas/inmunología , Enfermedades de las Ovejas/virología , Análisis de Supervivencia , Resultado del Tratamiento , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Factores de Virulencia/deficiencia
18.
Mol Biotechnol ; 57(1): 58-64, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25173687

RESUMEN

One of the impediments in the development of safe and cost effective vaccines for veterinary use has been the availability of appropriate delivery vehicle. We have chosen to develop and use bovine adenovirus (BAdV)-3 as vaccine delivery vector in cattle. Here, we describe the construction of recombinant E3 deleted BAdV-3 vectors expressing single vaccine antigen (BAV360; bovine respiratory syncytial virus G) or two vaccine antigens (BAV851; bovine herpesvirus-1gDt and bovine respiratory syncytial virus G). Recombinant proteins expressed by BAV360 or BAV851 were recognized by protein-specific monoclonal antibodies. Moreover, intranasal immunization of cotton rats with BAV360 (expressing a single vaccine antigen) or BAV851 (expressing two vaccine antigens) induced strong antigen-specific immune responses. These results suggest that single replication-competent BAdV-3 expressing vaccine antigens of two economically important respiratory pathogens of calves has potential to act as a feasible approach in the development of economically effective veterinary vaccines for cattle.


Asunto(s)
Herpesvirus Bovino 1/metabolismo , Inmunidad , Proteínas Recombinantes/metabolismo , Virus Sincitial Respiratorio Bovino/metabolismo , Sigmodontinae/inmunología , Proteínas Virales de Fusión/metabolismo , Proteínas Virales/metabolismo , Animales , Formación de Anticuerpos/inmunología , Bovinos , Línea Celular , Vacunas Virales/inmunología
19.
Clin Vaccine Immunol ; 22(1): 79-90, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378352

RESUMEN

Protective efficacy against bovine herpesvirus 1 (BoHV-1) has been demonstrated to be induced by a plasmid encoding bovine neutrophil beta-defensin 3 (BNBD3) as a fusion construct with truncated glycoprotein D (tgD). However, in spite of the increased cell-mediated immune responses induced by this DNA vaccine, the clinical responses of BoHV-1-challenged cattle were not reduced over those observed in animals vaccinated with the plasmid encoding tgD alone; this might have been because the vaccine failed to improve humoral responses. We hypothesized that an alternative vaccine design strategy that utilized the DNA vaccine pMASIA-tgD as a complex with BNBD3 might improve humoral responses while maintaining robust Th1-type cell-mediated responses. C57BL/6 mice were vaccinated with pMASIA-tgD complexed with 0, 0.01875, 0.1875, or 1.875 nmol of a stable synthesized analog of BNBD3 (aBNBD3). The best results were seen in mice immunized with the vaccine composed of pMASIA-tgD complexed to 0.1875 nmol aBNBD3. In this group, humoral responses were improved, as evidenced by increased virus neutralization, tgD-specific early IgG1, and later IgG2a titers, while the strong cell-mediated immune responses, measured based on specific gamma interferon (IFN-γ)-secreting cells, were maintained relative to pMASIA-tgD. Modulation of the immune response might have been due in part to the effect of BNBD3 on dendritic cells (DCs). In vitro studies showed that murine bone marrow-derived DCs (BMDCs) pretreated with aBNBD3 were activated, as evidenced by CD11c downregulation, and were functionally mature, as shown by increased allostimulatory ability. Native, synthetic, and analog forms of BNBD3 were equally capable of inducing functional maturation of BMDCs.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Vacunas contra Herpesvirus/inmunología , Vacunas de ADN/inmunología , Proteínas Virales/inmunología , beta-Defensinas/genética , Adyuvantes Inmunológicos/genética , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra Herpesvirus/administración & dosificación , Vacunas contra Herpesvirus/genética , Inmunoglobulina G/sangre , Interferón gamma/metabolismo , Leucocitos Mononucleares/inmunología , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Vacunación/métodos , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Proteínas Virales/genética
20.
Virus Res ; 197: 116-26, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25529439

RESUMEN

The UL47 gene product, VP8, is one of the most abundant tegument proteins of bovine herpesvirus-1 (BoHV-1). Deletion of VP8 leads to impaired growth in tissue culture, and VP8 is indispensable for BHV-1 replication in cattle. To elucidate the biological functions of VP8, we explored its interaction with mRNAs of immediate early (bICP0), early (gB, gD) and late (gC) genes of BoHV-1. FLAG-tagged VP8 was pulled down from COS-7 cells co-transfected with plasmids encoding VP8 and either gB, gC, gD or bICP0. This was followed by RNA extraction, cDNA synthesis and qPCR, which demonstrated binding of VP8 to bICP0, gB, gC and gD mRNAs in the cytoplasm and nucleus. These results were supported by co-localization of VP8 with bICP0, gB, gC and gD mRNAs in the nucleus as determined by confocal microscopy. Amino acids 259-342, located in the conserved portion of UL47 homologues, were found to contain the RNA binding region on VP8. To further characterize these interactions, Northwestern blotting was performed by immobilizing VP8 on a nitrocellulose membrane followed by hybridization with in vitro transcribed bICP0 mRNA. The results demonstrated binding of VP8 to intron-less mRNA but not intron-containing mRNA of bICP0. In addition, the interaction of VP8 with bICP0 mRNA was confirmed in vitro by RNA electrophoretic mobility shift assay, which also showed that the zinc finger and acidic domains both interact with VP8. Based on these results, we concluded that VP8 binds to intron-less mRNAs of bICP0, gB, gC and gD.


Asunto(s)
Proteínas de la Cápside/metabolismo , Herpesvirus Bovino 1/fisiología , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Células COS , Proteínas de la Cápside/genética , Núcleo Celular/virología , Chlorocebus aethiops , Citoplasma/virología , Ensayo de Cambio de Movilidad Electroforética , Microscopía Confocal , Plásmidos , Unión Proteica , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA