Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 9(9)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564291

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease associated with cardiomyopathy. DMD cardiomyopathy is characterized by abnormal intracellular Ca2+ homeostasis and mitochondrial dysfunction. We used dystrophin and utrophin double-knockout (mdx:utrn-/-) mice in a sarcolipin (SLN) heterozygous-knockout (sln+/-) background to examine the effect of SLN reduction on mitochondrial function in the dystrophic myocardium. Germline reduction of SLN expression in mdx:utrn-/- mice improved cardiac sarco/endoplasmic reticulum (SR) Ca2+ cycling, reduced cardiac fibrosis, and improved cardiac function. At the cellular level, reducing SLN expression prevented mitochondrial Ca2+ overload, reduced mitochondrial membrane potential loss, and improved mitochondrial function. Transmission electron microscopy of myocardial tissues and proteomic analysis of mitochondria-associated membranes showed that reducing SLN expression improved mitochondrial structure and SR-mitochondria interactions in dystrophic cardiomyocytes. These findings indicate that SLN upregulation plays a substantial role in the pathogenesis of cardiomyopathy and that reducing SLN expression has clinical implications in the treatment of DMD cardiomyopathy.


Asunto(s)
Cardiomiopatías , Distrofina , Ratones Endogámicos mdx , Ratones Noqueados , Proteínas Musculares , Distrofia Muscular de Duchenne , Proteolípidos , Utrofina , Animales , Masculino , Ratones , Calcio/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/patología , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Mitocondrias Cardíacas/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteolípidos/metabolismo , Proteolípidos/genética , Utrofina/genética , Utrofina/metabolismo
2.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37745514

RESUMEN

Sympathetic nerves co-develop with their target organs and release neurotransmitters to stimulate their functions after maturation. Here, we provide the molecular mechanism that during sweat gland morphogenesis, neurotransmitters released from sympathetic nerves act first to promote sweat duct elongation via norepinephrine and followed by acetylcholine to specify sweat gland stem cell fate, which matches the sequence of neurotransmitter switch. Without neuronal signals during development, the basal cells switch to exhibit suprabasal (luminal) cell features. Sarcolipin (SLN), a key regulator of sarcoendoplasmic reticulum (SR) Ca 2+ -ATPase (SERCA), expression is significantly down-regulated in the sweat gland myoepithelial cells upon denervation. Loss of SLN in sweat gland myoepithelial cells leads to decreased intracellular Ca 2+ over time in response to ACh stimulation, as well as upregulation of luminal cell features. In cell culture experiments, we showed that contrary to the paradigm that elevation of Ca 2+ promote epidermal differentiation, specification of the glandular myoepithelial (basal) cells requires high Ca 2+ while lowering Ca 2+ level promotes luminal (suprabasal) cell fate. Our work highlights that neuronal signals not only act transiently for mature sweat glands to function, but also exert long-term impact on glandular stem cell specification through regulating intracellular Ca 2+ dynamics.

3.
Circ Res ; 133(1): 6-21, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37232152

RESUMEN

BACKGROUND: Obesity induces cardiomyopathy characterized by hypertrophy and diastolic dysfunction. Whereas mitophagy mediated through an Atg7 (autophagy related 7)-dependent mechanism serves as an essential mechanism to maintain mitochondrial quality during the initial development of obesity cardiomyopathy, Rab9 (Ras-related protein Rab-9A)-dependent alternative mitophagy takes over the role during the chronic phase. Although it has been postulated that DRP1 (dynamin-related protein 1)-mediated mitochondrial fission and consequent separation of the damaged portions of mitochondria are essential for mitophagy, the involvement of DRP1 in mitophagy remains controversial. We investigated whether endogenous DRP1 is essential in mediating the 2 forms of mitophagy during high-fat diet (HFD)-induced obesity cardiomyopathy and, if so, what the underlying mechanisms are. METHODS: Mice were fed either a normal diet or an HFD (60 kcal %fat). Mitophagy was evaluated using cardiac-specific Mito-Keima mice. The role of DRP1 was evaluated using tamoxifen-inducible cardiac-specific Drp1knockout (Drp1 MCM) mice. RESULTS: Mitophagy was increased after 3 weeks of HFD consumption. The induction of mitophagy by HFD consumption was completely abolished in Drp1 MCM mouse hearts, in which both diastolic and systolic dysfunction were exacerbated. The increase in LC3 (microtubule-associated protein 1 light chain 3)-dependent general autophagy and colocalization between LC3 and mitochondrial proteins was abolished in Drp1 MCM mice. Activation of alternative mitophagy was also completely abolished in Drp1 MCM mice during the chronic phase of HFD consumption. DRP1 was phosphorylated at Ser616, localized at the mitochondria-associated membranes, and associated with Rab9 and Fis1 (fission protein 1) only during the chronic, but not acute, phase of HFD consumption. CONCLUSIONS: DRP1 is an essential factor in mitochondrial quality control during obesity cardiomyopathy that controls multiple forms of mitophagy. Although DRP1 regulates conventional mitophagy through a mitochondria-associated membrane-independent mechanism during the acute phase, it acts as a component of the mitophagy machinery at the mitochondria-associated membranes in alternative mitophagy during the chronic phase of HFD consumption.


Asunto(s)
Cardiomiopatías , Mitofagia , Animales , Ratones , Autofagia/fisiología , Cardiomiopatías/genética , Dinaminas/genética , Dinaminas/metabolismo , Corazón , Dinámicas Mitocondriales , Mitofagia/fisiología , Obesidad/genética
4.
Nat Commun ; 14(1): 602, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746942

RESUMEN

Polyglutamine expansion in the androgen receptor (AR) causes spinobulbar muscular atrophy (SBMA). Skeletal muscle is a primary site of toxicity; however, the current understanding of the early pathological processes that occur and how they unfold during disease progression remains limited. Using transgenic and knock-in mice and patient-derived muscle biopsies, we show that SBMA mice in the presymptomatic stage develop a respiratory defect matching defective expression of genes involved in excitation-contraction coupling (ECC), altered contraction dynamics, and increased fatigue. These processes are followed by stimulus-dependent accumulation of calcium into mitochondria and structural disorganization of the muscle triads. Deregulation of expression of ECC genes is concomitant with sexual maturity and androgen raise in the serum. Consistent with the androgen-dependent nature of these alterations, surgical castration and AR silencing alleviate the early and late pathological processes. These observations show that ECC deregulation and defective mitochondrial respiration are early but reversible events followed by altered muscle force, calcium dyshomeostasis, and dismantling of triad structure.


Asunto(s)
Andrógenos , Atrofia Bulboespinal Ligada al X , Ratones , Animales , Andrógenos/metabolismo , Atrofia Bulboespinal Ligada al X/genética , Calcio/metabolismo , Músculo Esquelético/metabolismo , Receptores Androgénicos/metabolismo , Mitocondrias/metabolismo , Respiración , Modelos Animales de Enfermedad
5.
J Am Heart Assoc ; 12(3): e027480, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36695318

RESUMEN

Background Cardiomyopathy is a leading health threat in Duchenne muscular dystrophy (DMD). Cytosolic calcium upregulation is implicated in DMD cardiomyopathy. Calcium is primarily removed from the cytosol by the sarcoendoplasmic reticulum calcium ATPase (SERCA). SERCA activity is reduced in DMD. Improving SERCA function may treat DMD cardiomyopathy. Dwarf open reading frame (DWORF) is a recently discovered positive regulator for SERCA, hence, a potential therapeutic target. Methods and Results To study DWORF's involvement in DMD cardiomyopathy, we quantified DWORF expression in the heart of wild-type mice and the mdx model of DMD. To test DWORF gene therapy, we engineered and characterized an adeno-associated virus serotype 9-DWORF vector. To determine if this vector can mitigate DMD cardiomyopathy, we delivered it to 6-week-old mdx mice (6×1012 vector genome particles/mouse) via the tail vein. Exercise capacity, heart histology, and cardiac function were examined at 18 months of age. We found DWORF expression was significantly reduced at the transcript and protein levels in mdx mice. Adeno-associated virus serotype 9-DWORF vector significantly enhanced SERCA activity. Systemic adeno-associated virus serotype 9-DWORF therapy reduced myocardial fibrosis and improved treadmill running, electrocardiography, and heart hemodynamics. Conclusions Our data suggest that DWORF deficiency contributes to SERCA dysfunction in mdx mice and that DWORF gene therapy holds promise to treat DMD cardiomyopathy.


Asunto(s)
Cardiomiopatías , Distrofia Muscular de Duchenne , Ratones , Animales , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Ratones Endogámicos mdx , Calcio , Sistemas de Lectura Abierta , Cardiomiopatías/genética , Cardiomiopatías/terapia , Terapia Genética/métodos
6.
Am J Physiol Cell Physiol ; 322(2): C260-C274, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34986021

RESUMEN

Duchenne muscular dystrophy (DMD) is an inherited muscle wasting disease. Metabolic impairments and oxidative stress are major secondary mechanisms that severely worsen muscle function in DMD. Here, we sought to determine whether germline reduction or ablation of sarcolipin (SLN), an inhibitor of sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA), improves muscle metabolism and ameliorates muscle pathology in the mdx mouse model of DMD. Glucose and insulin tolerance tests show that glucose clearance rate and insulin sensitivity were improved in the SLN haploinsufficient mdx (mdx:sln+/-) and SLN-deficient mdx (mdx:sln-/-) mice. The histopathological analysis shows that fibrosis and necrosis were significantly reduced in muscles of mdx:sln+/- and mdx:sln-/- mice. SR Ca2+ uptake, mitochondrial complex protein levels, complex activities, mitochondrial Ca2+ uptake and release, and mitochondrial metabolism were significantly improved, and lipid peroxidation and protein carbonylation were reduced in the muscles of mdx:sln+/- and mdx:sln-/- mice. These data demonstrate that reduction or ablation of SLN expression can improve muscle metabolism, reduce oxidative stress, decrease muscle pathology, and protects the mdx mice from glucose intolerance.


Asunto(s)
Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Proteolípidos/antagonistas & inhibidores , Proteolípidos/biosíntesis , Animales , Glucemia/genética , Glucemia/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Proteínas Musculares/genética , Estrés Oxidativo/fisiología , Proteolípidos/genética
7.
Sci Rep ; 11(1): 10553, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006931

RESUMEN

Fibrosis is a hallmark of heart disease independent of etiology and is thought to contribute to impaired cardiac dysfunction and development of heart failure. However, the underlying mechanisms that regulate the differentiation of fibroblasts to myofibroblasts and fibrotic responses remain incompletely defined. As a result, effective treatments to mitigate excessive fibrosis are lacking. We recently demonstrated that the Hippo pathway effector Yes-associated protein (YAP) is an important mediator of myofibroblast differentiation and fibrosis in the infarcted heart. Yet, whether YAP activation in cardiac fibroblasts is sufficient to drive fibrosis, and how fibroblast YAP affects myocardial inflammation, a significant component of adverse cardiac remodeling, are largely unknown. In this study, we leveraged adeno-associated virus (AAV) to target cardiac fibroblasts and demonstrate that chronic YAP expression upregulated indices of fibrosis and inflammation in the absence of additional stress. YAP occupied the Ccl2 gene and promoted Ccl2 expression, which was associated with increased macrophage infiltration, pro-inflammatory cytokine expression, collagen deposition, and cardiac dysfunction in mice with cardiac fibroblast-targeted YAP overexpression. These results are consistent with other recent reports and extend our understanding of YAP function in modulating fibrotic and inflammatory responses in the heart.


Asunto(s)
Dependovirus/genética , Fibrosis/patología , Vectores Genéticos , Inflamación/genética , Miofibroblastos/metabolismo , Factores de Transcripción/genética , Animales , Regulación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Ratas , Ratas Wistar
8.
Front Physiol ; 12: 647010, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897454

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disease caused by the loss of dystrophin. DMD is associated with muscle degeneration, necrosis, inflammation, fatty replacement, and fibrosis, resulting in muscle weakness, respiratory and cardiac failure, and premature death. There is no curative treatment. Investigations on disease-causing mechanisms offer an opportunity to identify new therapeutic targets to treat DMD. An abnormal elevation of the intracellular calcium ( Ca i 2 + ) concentration in the dystrophin-deficient muscle is a major secondary event, which contributes to disease progression in DMD. Emerging studies have suggested that targeting Ca2+-handling proteins and/or mechanisms could be a promising therapeutic strategy for DMD. Here, we provide an updated overview of the mechanistic roles the sarcolemma, sarcoplasmic/endoplasmic reticulum, and mitochondria play in the abnormal and sustained elevation of Ca i 2 + levels and their involvement in DMD pathogenesis. We also discuss current approaches aimed at restoring Ca2+ homeostasis as potential therapies for DMD.

9.
Am J Physiol Heart Circ Physiol ; 320(1): H200-H210, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33216625

RESUMEN

Sarcolipin (SLN) is an inhibitor of sarco/endoplasmic reticulum (SR) Ca2+-ATPase (SERCA) and expressed at high levels in the ventricles of animal models for and patients with Duchenne muscular dystrophy (DMD). The goal of this study was to determine whether the germline ablation of SLN expression improves cardiac SERCA function and intracellular Ca2+ (Ca2+i) handling and prevents cardiomyopathy in the mdx mouse model of DMD. Wild-type, mdx, SLN-haploinsufficient mdx (mdx:sln+/-), and SLN-deficient mdx (mdx:sln-/-) mice were used for this study. SERCA function and Ca2+i handling were determined by Ca2+ uptake assays and by measuring single-cell Ca2+ transients, respectively. Age-dependent disease progression was determined by histopathological examinations and by echocardiography in 6-, 12-, and 20-mo-old mice. Gene expression changes in the ventricles of mdx:sln+/- mice were determined by RNA-Seq analysis. SERCA function and Ca2+i cycling were improved in the ventricles of mdx:sln+/- mice. Fibrosis and necrosis were significantly decreased, and cardiac function was enhanced in the mdx:sln+/- mice until the study endpoint. The mdx:sln-/- mice also exhibited similar beneficial effects. RNA-Seq analysis identified distinct gene expression changes including the activation of the apelin pathway in the ventricles of mdx:sln+/- mice. Our findings suggest that reducing SLN expression is sufficient to improve cardiac SERCA function and Ca2+i cycling and prevent cardiomyopathy in mdx mice.NEW & NOTEWORTHY First, reducing sarcopolin (SLN) expression improves sarco/endoplasmic reticulum Ca2+ uptake and intracellular Ca2+ handling and prevents cardiomyopathy in mdx mice. Second, reducing SLN expression prevents diastolic dysfunction and improves cardiac contractility in mdx mice Third, reducing SLN expression activates apelin-mediated cardioprotective signaling pathways in mdx heart.


Asunto(s)
Cardiomiopatías/prevención & control , Haploinsuficiencia , Proteínas Musculares/deficiencia , Distrofia Muscular de Duchenne/complicaciones , Miocardio/metabolismo , Proteolípidos/deficiencia , Animales , Apelina/genética , Apelina/metabolismo , Calcio/metabolismo , Señalización del Calcio , Cardiomiopatías/etiología , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibrosis , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Miocardio/patología , Necrosis , Proteolípidos/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Función Ventricular Izquierda
10.
Mol Ther ; 28(3): 845-854, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31981493

RESUMEN

Loss of dystrophin leads to Duchenne muscular dystrophy (DMD). A pathogenic feature of DMD is the significant elevation of cytosolic calcium. Supraphysiological calcium triggers protein degradation, membrane damage, and eventually muscle death and dysfunction. Sarcoplasmic/endoplasmic reticulum (SR) calcium ATPase (SERCA) is a calcium pump that transports cytosolic calcium to the SR during excitation-contraction coupling. We hypothesize that a single systemic delivery of SERCA2a with adeno-associated virus (AAV) may improve calcium recycling and provide long-lasting benefits in DMD. To test this, we injected an AAV9 human SERCA2a vector (6 × 1012 viral genome particles/mouse) intravenously to 3-month-old mdx mice, the most commonly used DMD model. Immunostaining and western blot showed robust human SERCA2a expression in the heart and skeletal muscle for 18 months. Concomitantly, SR calcium uptake was significantly improved in these tissues. SERCA2a therapy significantly enhanced grip force and treadmill performance, completely prevented myocardial fibrosis, and normalized electrocardiograms (ECGs). Cardiac catheterization showed normalization of multiple systolic and diastolic hemodynamic parameters in treated mice. Importantly, chamber dilation was completely prevented, and ejection fraction was restored to the wild-type level. Our results suggest that a single systemic AAV9 SERCA2a therapy has the potential to provide long-lasting benefits for DMD.


Asunto(s)
Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/terapia , Expresión Génica , Terapia Genética , Distrofia Muscular de Duchenne/complicaciones , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Administración Intravenosa , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Terapia Genética/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Retículo Sarcoplasmático/metabolismo , Factores de Tiempo , Transducción Genética
11.
Am J Physiol Cell Physiol ; 317(4): C813-C824, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31365291

RESUMEN

Reduction in the expression of sarcolipin (SLN), an inhibitor of sarco(endo)plasmic reticulum (SR) Ca2+-ATPase (SERCA), ameliorates severe muscular dystrophy in mice. However, the mechanism by which SLN inhibition improves muscle structure remains unclear. Here, we describe the previously unknown function of SLN in muscle differentiation in Duchenne muscular dystrophy (DMD). Overexpression of SLN in C2C12 resulted in decreased SERCA pump activity, reduced SR Ca2+ load, and increased intracellular Ca2+ (Cai2+) concentration. In addition, SLN overexpression resulted in altered expression of myogenic markers and poor myogenic differentiation. In dystrophin-deficient dog myoblasts and myotubes, SLN expression was significantly high and associated with defective Cai2+ cycling. The dystrophic dog myotubes were less branched and associated with decreased autophagy and increased expression of mitochondrial fusion and fission proteins. Reduction in SLN expression restored these changes and enhanced dystrophic dog myoblast fusion during differentiation. In summary, our data suggest that SLN upregulation is an intrinsic secondary change in dystrophin-deficient myoblasts and could account for the Cai2+ mishandling, which subsequently contributes to poor myogenic differentiation. Accordingly, reducing SLN expression can improve the Cai2+ cycling and differentiation of dystrophic myoblasts. These findings provide cellular-level supports for targeting SLN expression as a therapeutic strategy for DMD.


Asunto(s)
Calcio/metabolismo , Desarrollo de Músculos/fisiología , Proteínas Musculares/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Proteolípidos/metabolismo , Animales , Diferenciación Celular/fisiología , Perros , Distrofina/deficiencia , Ratones Noqueados , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Mioblastos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
12.
Nat Commun ; 8(1): 1068, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29051551

RESUMEN

Sarcolipin (SLN) is an inhibitor of the sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) and is abnormally elevated in the muscle of Duchenne muscular dystrophy (DMD) patients and animal models. Here we show that reducing SLN levels ameliorates dystrophic pathology in the severe dystrophin/utrophin double mutant (mdx:utr -/-) mouse model of DMD. Germline inactivation of one allele of the SLN gene normalizes SLN expression, restores SERCA function, mitigates skeletal muscle and cardiac pathology, improves muscle regeneration, and extends the lifespan. To translate our findings into a therapeutic strategy, we knock down SLN expression in 1-month old mdx:utr -/- mice via adeno-associated virus (AAV) 9-mediated RNA interference. The AAV treatment markedly reduces SLN expression, attenuates muscle pathology and improves diaphragm, skeletal muscle and cardiac function. Taken together, our findings suggest that SLN reduction is a promising therapeutic approach for DMD.


Asunto(s)
Cardiomiopatías/fisiopatología , Regulación de la Expresión Génica/genética , Silenciador del Gen , Terapia Genética , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/fisiopatología , Distrofia Muscular de Duchenne/terapia , Proteolípidos/genética , Animales , Cardiomiopatías/genética , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Proteínas Musculares/metabolismo , Distrofia Muscular de Duchenne/genética , Proteolípidos/metabolismo , Interferencia de ARN , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Utrofina/genética , Utrofina/metabolismo
13.
Circ Heart Fail ; 10(2)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28193718

RESUMEN

BACKGROUND: In general, Ras proteins are thought to promote cardiac hypertrophy, an important risk factor for cardiovascular disease and heart failure. However, the contribution of different Ras isoforms has not been investigated. The objective of this study was to define the role of H- and K-Ras in modulating stress-induced myocardial hypertrophy and failure. METHODS AND RESULTS: We used H- and K-Ras gene knockout mice and subjected them to pressure overload to induce cardiac hypertrophy and dysfunction. We observed a worsened cardiac phenotype in Hras-/- mice, while outcomes were improved in Kras+/- mice. We also used a neonatal rat cardiomyocyte culture system to elucidate the mechanisms underlying these observations. Our findings demonstrate that H-Ras, but not K-Ras, promotes cardiomyocyte hypertrophy both in vivo and in vitro. This response was mediated in part through the phosphoinositide 3-kinase-AKT signaling pathway. Adeno-associated virus-mediated increase in AKT activation improved the cardiac function in pressure overloaded Hras null hearts in vivo. These findings further support engagement of the phosphoinositide 3-kinase-AKT signaling axis by H-Ras. CONCLUSIONS: Taken together, these findings indicate that H- and K-Ras have divergent effects on cardiac hypertrophy and heart failure in response to pressure overload stress.


Asunto(s)
Presión Arterial , Cardiomegalia/prevención & control , Insuficiencia Cardíaca/prevención & control , Miocitos Cardíacos/enzimología , Proteínas Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas ras/metabolismo , Animales , Animales Recién Nacidos , Aorta Torácica/fisiopatología , Aorta Torácica/cirugía , Cardiomegalia/enzimología , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Células Cultivadas , Modelos Animales de Enfermedad , Activación Enzimática , Genotipo , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Ligadura , Masculino , Ratones Noqueados , Miocitos Cardíacos/patología , Fenotipo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas p21(ras)/deficiencia , Proteínas Proto-Oncogénicas p21(ras)/genética , Interferencia de ARN , Ratas Wistar , Transducción de Señal , Factores de Tiempo , Transfección
14.
PLoS One ; 10(2): e0115822, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25671318

RESUMEN

The functional importance of threonine 5 (T5) in modulating the activity of sarcolipin (SLN), a key regulator of sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) pump was studied using a transgenic mouse model with cardiac specific expression of threonine 5 to alanine mutant SLN (SLNT5A). In these transgenic mice, the SLNT5A protein replaces the endogenous SLN in atria, while maintaining the total SLN content. The cardiac specific expression of SLNT5A results in severe cardiac structural remodeling accompanied by bi-atrial enlargement. Biochemical analyses reveal a selective downregulation of SR Ca2+ handling proteins and a reduced SR Ca2+ uptake both in atria and in the ventricles. Optical mapping analysis shows slower action potential propagation in the transgenic mice atria. Doppler echocardiography and hemodynamic measurements demonstrate a reduced atrial contractility and an impaired diastolic function. Together, these findings suggest that threonine 5 plays an important role in modulating SLN function in the heart. Furthermore, our studies suggest that alteration in SLN function can cause abnormal Ca2+ handling and subsequent cardiac remodeling and dysfunction.


Asunto(s)
Proteínas Musculares/genética , Mutación , Miocardio/metabolismo , Miocardio/patología , Proteolípidos/genética , Treonina/genética , Disfunción Ventricular/genética , Remodelación Ventricular/genética , Animales , Calcio/metabolismo , Diástole/genética , Expresión Génica , Atrios Cardíacos/metabolismo , Hemodinámica , Ratones , Ratones Transgénicos , Proteínas Musculares/metabolismo , Especificidad de Órganos/genética , Proteolípidos/metabolismo , Retículo Sarcoplasmático/metabolismo , Treonina/metabolismo
15.
Am J Physiol Heart Circ Physiol ; 308(3): H240-9, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25485900

RESUMEN

Inhibition of ß-adrenergic receptor (ß-AR) signaling is one of the most common therapeutic approaches for patients with arrhythmias. Adenylyl cyclase (AC) is the key enzyme responsible for transducing ß-AR stimulation to increases in cAMP. The two major AC isoforms in the heart are types 5 and 6. Therefore, it is surprising that prior studies on overexpression of AC5 and AC6 in transgenic (Tg) mice have not examined mediation of arrhythmogenesis. Our goal was to examine the proarrhythmic substrate in AC5Tg hearts. Intracellular calcium ion (Ca(2+) i) was imaged in fluo-4 AM-loaded ventricular myocytes. The sarcoplasmic reticulum (SR) Ca(2+) content, fractional Ca(2+) release, and twitch Ca(2+) transient were significantly higher in the AC5Tg vs. wild-type (WT) myocytes, indicating Ca(2+) overload in AC5Tg myocytes. Action potential (AP) duration was significantly longer in AC5Tg than in WT myocytes. Additionally, AC5Tg myocytes developed spontaneous Ca(2+) waves in a larger fraction compared with WT myocytes, particularly when cells were exposed to isoproterenol. The Ca(2+) waves further induced afterdepolarizations and triggered APs. AC5Tg hearts had increased level of SERCA2a, oxidized Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), and phosphorylation of ryanodine receptors (RyR) at the CaMKII site, especially after isoproterenol treatment. This was consistent with higher reactive oxygen species production in AC5Tg myocytes after isoproterenol treatment. Isoproterenol induced more severe arrhythmias in AC5Tg than in WT mice. We conclude that AC5 overexpression promotes arrhythmogenesis, by inducing SR Ca(2+) overload and hyperactivation of RyR (phosphorylation by CaMKII), which in turn induces spontaneous Ca(2+) waves and afterdepolarizations.


Asunto(s)
Adenilil Ciclasas/metabolismo , Arritmias Cardíacas/metabolismo , Potenciales de Acción , Adenilil Ciclasas/genética , Animales , Calcio/metabolismo , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiotónicos/farmacología , Células Cultivadas , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Isoproterenol/farmacología , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
16.
PLoS One ; 9(12): e110571, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25438154

RESUMEN

Recent studies demonstrate reduced motor-nerve function during autoimmune muscle-specific tyrosine kinase (MuSK) myasthenia gravis (MG). To further understand the basis of motor-nerve dysfunction during MuSK-MG, we immunized female C57/B6 mice with purified rat MuSK ectodomain. Nerve-muscle preparations were dissected and neuromuscular junctions (NMJs) studied electrophysiologically, morphologically, and biochemically. While all mice produced antibodies to MuSK, only 40% developed respiratory muscle weakness. In vitro study of respiratory nerve-muscle preparations isolated from these affected mice revealed that 78% of NMJs produced endplate currents (EPCs) with significantly reduced quantal content, although potentiation and depression at 50 Hz remained qualitatively normal. EPC and mEPC amplitude variability indicated significantly reduced number of vesicle-release sites (active zones) and reduced probability of vesicle release. The readily releasable vesicle pool size and the frequency of large amplitude mEPCs also declined. The remaining NMJs had intermittent (4%) or complete (18%) failure of neurotransmitter release in response to 50 Hz nerve stimulation, presumably due to blocked action potential entry into the nerve terminal, which may arise from nerve terminal swelling and thinning. Since MuSK-MG-affected muscles do not express the AChR γ subunit, the observed prolongation of EPC decay time was not due to inactivity-induced expression of embryonic acetylcholine receptor, but rather to reduced catalytic activity of acetylcholinesterase. Muscle protein levels of MuSK did not change. These findings provide novel insight into the pathophysiology of autoimmune MuSK-MG.


Asunto(s)
Miastenia Gravis Autoinmune Experimental/patología , Miastenia Gravis Autoinmune Experimental/fisiopatología , Conducción Nerviosa , Proteínas Tirosina Quinasas Receptoras/inmunología , Vesículas Sinápticas/metabolismo , Animales , Femenino , Inmunización Pasiva , Ratones , Placa Motora/patología , Placa Motora/fisiopatología , Neuronas Motoras/patología , Miastenia Gravis Autoinmune Experimental/inmunología , Miastenia Gravis Autoinmune Experimental/metabolismo , Neurotransmisores/metabolismo , Estructura Terciaria de Proteína , Ratas , Proteínas Tirosina Quinasas Receptoras/química , Receptores Colinérgicos/metabolismo , Vacunación
17.
Circ Heart Fail ; 7(1): 194-202, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24297688

RESUMEN

BACKGROUND: There is currently no therapy proven to attenuate left ventricular (LV) dilatation and dysfunction in volume overload induced by isolated mitral regurgitation (MR). To better understand molecular signatures underlying isolated MR, we performed LV gene expression analyses and overlaid regulated genes into ingenuity pathway analysis in patients with isolated MR. METHODS AND RESULTS: Gene arrays from LV tissue of 35 patients, taken at the time of surgical repair for isolated MR, were compared with 13 normal controls. Cine-MRI was performed in 31 patients before surgery to measure LV function and volume from serial short-axis summation. LV end-diastolic volume was 2-fold (P=0.005) higher in MR patients than in normal controls, and LV ejection fraction was 64±7% (50%-79%) in MR patients. Ingenuity pathway analysis identified significant activation of pathways involved in ß-adrenergic, cAMP, and G-protein-coupled signaling, whereas there was downregulation of pathways associated with complement activation and acute phase response. SERCA2a and phospholamban protein were unchanged in MR versus control left ventricles. However, mRNA and protein levels of the sarcoplasmic reticulum Ca2+ ATPase (SERCA) regulatory protein sarcolipin, which is predominantly expressed in normal atria, were increased 12- and 6-fold, respectively. Immunofluorescence analysis confirmed the absence of sarcolipin in normal left ventricles and its marked upregulation in MR left ventricles. CONCLUSIONS: These results demonstrate alterations in multiple pathways associated with ß-adrenergic signaling and sarcolipin in the left ventricles of patients with isolated MR and LV ejection fraction>50%, suggesting a beneficial role for ß-adrenergic blockade in isolated MR.


Asunto(s)
Adrenérgicos/metabolismo , Insuficiencia de la Válvula Mitral/metabolismo , Proteínas Musculares/metabolismo , Proteolípidos/metabolismo , Volumen Sistólico/fisiología , Disfunción Ventricular Izquierda/metabolismo , Adulto , Anciano , Biopsia , Estudios de Casos y Controles , Femenino , Perfilación de la Expresión Génica , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Insuficiencia de la Válvula Mitral/fisiopatología , Proteínas Musculares/genética , Proteolípidos/genética , Transducción de Señal/fisiología , Regulación hacia Arriba , Disfunción Ventricular Izquierda/fisiopatología
18.
Am J Physiol Heart Circ Physiol ; 305(10): H1440-50, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24014679

RESUMEN

Xanthine oxidase (XO) is increased in human and rat left ventricular (LV) myocytes with volume overload (VO) of mitral regurgitation and aortocaval fistula (ACF). In the setting of increased ATP demand, XO-mediated ROS can decrease mitochondrial respiration and contractile function. Thus, we tested the hypothesis that XO inhibition improves cardiomyocyte bioenergetics and LV function in chronic ACF in the rat. Sprague-Dawley rats were randomized to either sham or ACF ± allopurinol (100 mg·kg(-1)·day(-1), n ≥7 rats/group). Echocardiography at 8 wk demonstrated a similar 37% increase in LV end-diastolic dimension (P < 0.001), a twofold increase in LV end-diastolic pressure/wall stress (P < 0.05), and a twofold increase in lung weight (P < 0.05) in treated and untreated ACF groups versus the sham group. LV ejection fraction, velocity of circumferential shortening, maximal systolic elastance, and contractile efficiency were significantly depressed in ACF and significantly improved in ACF + allopurinol rats, all of which occurred in the absence of changes in the maximum O2 consumption rate measured in isolated cardiomyocytes using the extracellular flux analyzer. However, the improvement in contractile function is not paralleled by any attenuation in LV dilatation, LV end-diastolic pressure/wall stress, and lung weight. In conclusion, allopurinol improves LV contractile function and efficiency possibly by diminishing the known XO-mediated ROS effects on myofilament Ca(2+) sensitivity. However, LV remodeling and diastolic properties are not improved, which may explain the failure of XO inhibition to improve symptoms and hospitalizations in patients with severe heart failure.


Asunto(s)
Alopurinol/farmacología , Cardiotónicos/farmacología , Inhibidores Enzimáticos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Ventrículos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sístole/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Xantina Oxidasa/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Creatina Quinasa/metabolismo , Diástole/efectos de los fármacos , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/enzimología , Ventrículos Cardíacos/fisiopatología , Hemodinámica/efectos de los fármacos , Miocitos Cardíacos/enzimología , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/enzimología , Volumen Sistólico/efectos de los fármacos , Factores de Tiempo , Ultrasonografía , Presión Ventricular/efectos de los fármacos , Xantina Oxidasa/metabolismo
19.
J Muscle Res Cell Motil ; 34(5-6): 349-56, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23748997

RESUMEN

Abnormal intracellular Ca(2+) handling is an important factor in the progressive functional decline of dystrophic muscle. In the present study, we investigated the function of sarco(endo)plasmic reticulum (SR) Ca(2+) ATPase (SERCA) in various dystrophic muscles of mouse models of Duchenne muscular dystrophy. Our studies show that the protein expression of sarcolipin, a key regulator of the SERCA pump is abnormally high and correlates with decreased maximum velocity of SR Ca(2+) uptake in the soleus, diaphragm and quadriceps of mild (mdx) and severe (mdx:utr-/-) dystrophic mice. These changes are more pronounced in the muscles of mdx:utr-/- mice. We also found increased expression of SERCA2a and calsequestrin specifically in the dystrophic quadriceps. Immunostaining analysis further showed that SERCA2a expression is associated both with fibers expressing slow-type myosin and regenerating fibers expressing embryonic myosin. Together, our data suggest that sarcolipin upregulation is a common secondary alteration in all dystrophic muscles and contributes to the abnormal elevation of intracellular Ca(2+) concentration via SERCA inhibition.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Proteolípidos/biosíntesis , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/citología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
20.
Am J Physiol Cell Physiol ; 304(2): C194-206, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23135699

RESUMEN

The role of SMA and SMB smooth muscle myosin heavy chain (MHC) isoforms in tonic and phasic contractions was studied in phasic (longitudinal ileum and stomach circular antrum) and tonic (stomach circular fundus) smooth muscle tissues of SMB knockout mice. Knocking out the SMB MHC gene eliminated SMB MHC protein expression and resulted in upregulation of the SMA MHC protein without altering the total MHC protein level. Switching from SMB to SMA MHC protein expression decreased the rate of the force transient and increased the sustained tonic force in SMB((-/-)) ileum and antrum with high potassium (KPSS) but not with carbachol (CCh) stimulation. The increased tonic contraction under the depolarized condition was not through changes in second messenger signaling pathways (PKC/CPI-17 or Rho/ROCK signaling pathway) or LC(20) phosphorylation. Biochemical analyses showed that the expression of contractile regulatory proteins (MLCK, MLCP, PKCδ, and CPI-17) did not change significantly in tissues tested except for PKCα protein expression being significantly decreased in the SMB((-/-)) antrum. However, specifically activating PKCα with phorbol dibutyrate (PDBu) was not significantly different in knockout and wild-type tissues, with total force being a fraction of the force generation with KPSS or CCh stimulation in SMB((-/-)) ileum and antrum. Taken together, these data show removing the SMB MHC protein expression with a compensatory increase in the SMA MHC protein results in enhanced sustained KPSS-induced tonic contraction with a reduced rate of force generation in these phasic tissues.


Asunto(s)
Íleon/fisiología , Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Músculo Liso/fisiología , Cadenas Pesadas de Miosina/fisiología , Antro Pilórico/fisiología , Miosinas del Músculo Liso/fisiología , Animales , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Íleon/citología , Íleon/efectos de los fármacos , Ratones , Ratones Noqueados , Contracción Muscular/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Músculo Liso/citología , Músculo Liso/efectos de los fármacos , Cadenas Pesadas de Miosina/biosíntesis , Cadenas Pesadas de Miosina/genética , Forbol 12,13-Dibutirato/farmacología , Fosforilación , Potasio/farmacología , Proteína Quinasa C-alfa/biosíntesis , Proteína Quinasa C-alfa/fisiología , Antro Pilórico/citología , Antro Pilórico/efectos de los fármacos , Sistemas de Mensajero Secundario/efectos de los fármacos , Sistemas de Mensajero Secundario/genética , Sistemas de Mensajero Secundario/fisiología , Miosinas del Músculo Liso/biosíntesis , Miosinas del Músculo Liso/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA