Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
medRxiv ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39006447

RESUMEN

The major anxiety disorders (ANX; including generalized anxiety disorder, panic disorder, and phobias) are highly prevalent, often onset early, persist throughout life, and cause substantial global disability. Although distinct in their clinical presentations, they likely represent differential expressions of a dysregulated threat-response system. Here we present a genome-wide association meta-analysis comprising 122,341 European ancestry ANX cases and 729,881 controls. We identified 58 independent genome-wide significant ANX risk variants and 66 genes with robust biological support. In an independent sample of 1,175,012 self-report ANX cases and 1,956,379 controls, 51 of the 58 associated variants were replicated. As predicted by twin studies, we found substantial genetic correlation between ANX and depression, neuroticism, and other internalizing phenotypes. Follow-up analyses demonstrated enrichment in all major brain regions and highlighted GABAergic signaling as one potential mechanism underlying ANX genetic risk. These results advance our understanding of the genetic architecture of ANX and prioritize genes for functional follow-up studies.

2.
medRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699366

RESUMEN

Genome-wide association studies (GWAS) of psychiatric disorders (PD) yield numerous loci with significant signals, but often do not implicate specific genes. Because GWAS risk loci are enriched in expression/protein/methylation quantitative loci (e/p/mQTL, hereafter xQTL), transcriptome/proteome/methylome-wide association studies (T/P/MWAS, hereafter XWAS) that integrate xQTL and GWAS information, can link GWAS signals to effects on specific genes. To further increase detection power, gene signals are aggregated within relevant gene sets (GS) by performing gene set enrichment (GSE) analyses. Often GSE methods test for enrichment of "signal" genes in curated GS while overlooking their linkage disequilibrium (LD) structure, allowing for the possibility of increased false positive rates. Moreover, no GSE tool uses xQTL information to perform mendelian randomization (MR) analysis. To make causal inference on association between PD and GS, we develop a novel MR GSE (MR-GSE) procedure. First, we generate a "synthetic" GWAS for each MSigDB GS by aggregating summary statistics for x-level (mRNA, protein or DNA methylation (DNAm) levels) from the largest xQTL studies available) of genes in a GS. Second, we use synthetic GS GWAS as exposure in a generalized summary-data-based-MR analysis of complex trait outcomes. We applied MR-GSE to GWAS of nine important PD. When applied to the underpowered opioid use disorder GWAS, none of the four analyses yielded any signals, which suggests a good control of false positive rates. For other PD, MR-GSE greatly increased the detection of GO terms signals (2,594) when compared to the commonly used (non-MR) GSE method (286). Some of the findings might be easier to adapt for treatment, e.g., our analyses suggest modest positive effects for supplementation with certain vitamins and/or omega-3 for schizophrenia, bipolar and major depression disorder patients. Similar to other MR methods, when applying MR-GSE researchers should be mindful of the confounding effects of horizontal pleiotropy on statistical inference.

3.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38632050

RESUMEN

MOTIVATION: As the availability of larger and more ethnically diverse reference panels grows, there is an increase in demand for ancestry-informed imputation of genome-wide association studies (GWAS), and other downstream analyses, e.g. fine-mapping. Performing such analyses at the genotype level is computationally challenging and necessitates, at best, a laborious process to access individual-level genotype and phenotype data. Summary-statistics-based tools, not requiring individual-level data, provide an efficient alternative that streamlines computational requirements and promotes open science by simplifying the re-analysis and downstream analysis of existing GWAS summary data. However, existing tools perform only disparate parts of needed analysis, have only command-line interfaces, and are difficult to extend/link by applied researchers. RESULTS: To address these challenges, we present Genome Analysis Using Summary Statistics (GAUSS)-a comprehensive and user-friendly R package designed to facilitate the re-analysis/downstream analysis of GWAS summary statistics. GAUSS offers an integrated toolkit for a range of functionalities, including (i) estimating ancestry proportion of study cohorts, (ii) calculating ancestry-informed linkage disequilibrium, (iii) imputing summary statistics of unobserved variants, (iv) conducting transcriptome-wide association studies, and (v) correcting for "Winner's Curse" biases. Notably, GAUSS utilizes an expansive, multi-ethnic reference panel consisting of 32 953 genomes from 29 ethnic groups. This panel enhances the range and accuracy of imputable variants, including the ability to impute summary statistics of rarer variants. As a result, GAUSS elevates the quality and applicability of existing GWAS analyses without requiring access to subject-level genotypic and phenotypic information. AVAILABILITY AND IMPLEMENTATION: The GAUSS R package, complete with its source code, is readily accessible to the public via our GitHub repository at https://github.com/statsleelab/gauss. To further assist users, we provided illustrative use-case scenarios that are conveniently found at https://statsleelab.github.io/gauss/, along with a comprehensive user guide detailed in Supplementary Text S1.


Asunto(s)
Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Programas Informáticos , Estudio de Asociación del Genoma Completo/métodos , Humanos , Polimorfismo de Nucleótido Simple , Genotipo , Estudios de Cohortes
4.
Nat Genet ; 56(5): 792-808, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38637617

RESUMEN

Post-traumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 new). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (for example, GRIA1, GRM8 and CACNA1E), developmental, axon guidance and transcription factors (for example, FOXP2, EFNA5 and DCC), synaptic structure and function genes (for example, PCLO, NCAM1 and PDE4B) and endocrine or immune regulators (for example, ESR1, TRAF3 and TANK). Additional top genes influence stress, immune, fear and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/genética , Población Blanca/genética , Neurobiología , Sitios Genéticos
5.
Nat Genet ; 55(12): 2082-2093, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37985818

RESUMEN

Biobanks often contain several phenotypes relevant to diseases such as major depressive disorder (MDD), with partly distinct genetic architectures. Researchers face complex tradeoffs between shallow (large sample size, low specificity/sensitivity) and deep (small sample size, high specificity/sensitivity) phenotypes, and the optimal choices are often unclear. Here we propose to integrate these phenotypes to combine the benefits of each. We use phenotype imputation to integrate information across hundreds of MDD-relevant phenotypes, which significantly increases genome-wide association study (GWAS) power and polygenic risk score (PRS) prediction accuracy of the deepest available MDD phenotype in UK Biobank, LifetimeMDD. We demonstrate that imputation preserves specificity in its genetic architecture using a novel PRS-based pleiotropy metric. We further find that integration via summary statistics also enhances GWAS power and PRS predictions, but can introduce nonspecific genetic effects depending on input. Our work provides a simple and scalable approach to improve genetic studies in large biobanks by integrating shallow and deep phenotypes.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/genética , Predisposición Genética a la Enfermedad , Bancos de Muestras Biológicas , Estudio de Asociación del Genoma Completo , Herencia Multifactorial/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética
6.
bioRxiv ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37745400

RESUMEN

Alcohol use disorder (AUD) is moderately heritable with significant social and economic impact. Genome-wide association studies (GWAS) have identified common variants associated with AUD, however, rare variant investigations have yet to achieve well-powered sample sizes. In this study, we conducted an interval-based exome-wide analysis of the Alcohol Use Disorder Identification Test Problems subscale (AUDIT-P) using both machine learning (ML) predicted risk and empirical functional weights. This research has been conducted using the UK Biobank Resource (application number 30782.) Filtering the 200k exome release to unrelated individuals of European ancestry resulted in a sample of 147,386 individuals with 51,357 observed and 96,029 unmeasured but predicted AUDIT-P for exome analysis. Sequence Kernel Association Test (SKAT/SKAT-O) was used for rare variant (Minor Allele Frequency (MAF) < 0.01) interval analyses using default and empirical weights. Empirical weights were constructed using annotations found significant by stratified LD Score Regression analysis of predicted AUDIT-P GWAS, providing prior functional weights specific to AUDIT-P. Using only samples with observed AUDIT-P yielded no significantly associated intervals. In contrast, ADH1C and THRA gene intervals were significant (False discovery rate (FDR) <0.05) using default and empirical weights in the predicted AUDIT-P sample, with the most significant association found using predicted AUDIT-P and empirical weights in the ADH1C gene (SKAT-O P Default = 1.06 x 10 -9 and P Empirical weight = 6.25 x 10 -11 ). These findings provide evidence for rare variant association of the ADH1C gene with the AUDIT-P and highlight the successful leveraging of ML to increase effective sample size and prior empirical functional weights based on common variant GWAS data to refine and increase the statistical significance in underpowered phenotypes.

7.
medRxiv ; 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37693460

RESUMEN

Posttraumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 novel). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (e.g., GRIA1, GRM8, CACNA1E ), developmental, axon guidance, and transcription factors (e.g., FOXP2, EFNA5, DCC ), synaptic structure and function genes (e.g., PCLO, NCAM1, PDE4B ), and endocrine or immune regulators (e.g., ESR1, TRAF3, TANK ). Additional top genes influence stress, immune, fear, and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation.

8.
Complex Psychiatry ; 9(1-4): 130-144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37588130

RESUMEN

Background: The genome-wide association study (GWAS) is a common tool to identify genetic variants associated with complex traits, including psychiatric disorders (PDs). However, post-GWAS analyses are needed to extend the statistical inference to biologically relevant entities, e.g., genes, proteins, and pathways. To achieve this goal, researchers developed methods that incorporate biologically relevant intermediate molecular phenotypes, such as gene expression and protein abundance, which are posited to mediate the variant-trait association. Transcriptome-wide association study (TWAS) and proteome-wide association study (PWAS) are commonly used methods to test the association between these molecular mediators and the trait. Summary: In this review, we discuss the most recent developments in TWAS and PWAS. These methods integrate existing "omic" information with the GWAS summary statistics for trait(s) of interest. Specifically, they impute transcript/protein data and test the association between imputed gene expression/protein level with phenotype of interest by using (i) GWAS summary statistics and (ii) reference transcriptomic/proteomic/genomic datasets. TWAS and PWAS are suitable as analysis tools for (i) primary association scan and (ii) fine-mapping to identify potentially causal genes for PDs. Key Messages: As post-GWAS analyses, TWAS and PWAS have the potential to highlight causal genes for PDs. These prioritized genes could indicate targets for the development of novel drug therapies. For researchers attempting such analyses, we recommend Mendelian randomization tools that use GWAS statistics for both trait and reference datasets, e.g., summary Mendelian randomization (SMR). We base our recommendation on (i) being able to use the same tool for both TWAS and PWAS, (ii) not requiring the pre-computed weights (and thus easier to update for larger reference datasets), and (iii) most larger transcriptome reference datasets are publicly available and easy to transform into a compatible format for SMR analysis.

9.
Front Genet ; 14: 1191264, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415601

RESUMEN

Neuropsychiatric and substance use disorders (NPSUDs) have a complex etiology that includes environmental and polygenic risk factors with significant cross-trait genetic correlations. Genome-wide association studies (GWAS) of NPSUDs yield numerous association signals. However, for most of these regions, we do not yet have a firm understanding of either the specific risk variants or the effects of these variants. Post-GWAS methods allow researchers to use GWAS summary statistics and molecular mediators (transcript, protein, and methylation abundances) infer the effect of these mediators on risk for disorders. One group of post-GWAS approaches is commonly referred to as transcriptome/proteome/methylome-wide association studies, which are abbreviated as T/P/MWAS (or collectively as XWAS). Since these approaches use biological mediators, the multiple testing burden is reduced to the number of genes (∼20,000) instead of millions of GWAS SNPs, which leads to increased signal detection. In this work, our aim is to uncover likely risk genes for NPSUDs by performing XWAS analyses in two tissues-blood and brain. First, to identify putative causal risk genes, we performed an XWAS using the Summary-data-based Mendelian randomization, which uses GWAS summary statistics, reference xQTL data, and a reference LD panel. Second, given the large comorbidities among NPSUDs and the shared cis-xQTLs between blood and the brain, we improved XWAS signal detection for underpowered analyses by performing joint concordance analyses between XWAS results i) across the two tissues and ii) across NPSUDs. All XWAS signals i) were adjusted for heterogeneity in dependent instruments (HEIDI) (non-causality) p-values and ii) used to test for pathway enrichment. The results suggest that there were widely shared gene/protein signals within the major histocompatibility complex region on chromosome 6 (BTN3A2 and C4A) and elsewhere in the genome (FURIN, NEK4, RERE, and ZDHHC5). The identification of putative molecular genes and pathways underlying risk may offer new targets for therapeutic development. Our study revealed an enrichment of XWAS signals in vitamin D and omega-3 gene sets. So, including vitamin D and omega-3 in treatment plans may have a modest but beneficial effect on patients with bipolar disorder.

10.
Br J Psychiatry ; 223(1): 301-308, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36503694

RESUMEN

BACKGROUND: Psychotic disorders and schizotypal traits aggregate in the relatives of probands with schizophrenia. It is currently unclear how variability in symptom dimensions in schizophrenia probands and their relatives is associated with polygenic liability to psychiatric disorders. AIMS: To investigate whether polygenic risk scores (PRSs) can predict symptom dimensions in members of multiplex families with schizophrenia. METHOD: The largest genome-wide data-sets for schizophrenia, bipolar disorder and major depressive disorder were used to construct PRSs in 861 participants from the Irish Study of High-Density Multiplex Schizophrenia Families. Symptom dimensions were derived using the Operational Criteria Checklist for Psychotic Disorders in participants with a history of a psychotic episode, and the Structured Interview for Schizotypy in participants without a history of a psychotic episode. Mixed-effects linear regression models were used to assess the relationship between PRS and symptom dimensions across the psychosis spectrum. RESULTS: Schizophrenia PRS is significantly associated with the negative/disorganised symptom dimension in participants with a history of a psychotic episode (P = 2.31 × 10-4) and negative dimension in participants without a history of a psychotic episode (P = 1.42 × 10-3). Bipolar disorder PRS is significantly associated with the manic symptom dimension in participants with a history of a psychotic episode (P = 3.70 × 10-4). No association with major depressive disorder PRS was observed. CONCLUSIONS: Polygenic liability to schizophrenia is associated with higher negative/disorganised symptoms in participants with a history of a psychotic episode and negative symptoms in participants without a history of a psychotic episode in multiplex families with schizophrenia. These results provide genetic evidence in support of the spectrum model of schizophrenia, and support the view that negative and disorganised symptoms may have greater genetic basis than positive symptoms, making them better indices of familial liability to schizophrenia.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos Psicóticos , Esquizofrenia , Trastorno de la Personalidad Esquizotípica , Humanos , Esquizofrenia/diagnóstico , Esquizofrenia/genética , Trastorno de la Personalidad Esquizotípica/diagnóstico , Trastorno de la Personalidad Esquizotípica/genética , Trastorno de la Personalidad Esquizotípica/psicología , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/genética , Trastornos Psicóticos/genética , Trastornos Psicóticos/psicología , Factores de Riesgo
11.
Schizophrenia (Heidelb) ; 8(1): 106, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434002

RESUMEN

Psychotic and affective disorders often aggregate in the relatives of probands with schizophrenia, and genetic studies show substantial genetic correlation among schizophrenia, bipolar disorder, and major depressive disorder. In this study, we examined the polygenic risk burden of bipolar disorder and major depressive disorder in 257 multiplex schizophrenia families (N = 1005) from the Irish Study of High-Density Multiplex Schizophrenia Families versus 2205 ancestry-matched controls. Our results indicate that members of multiplex schizophrenia families have an increased polygenic risk for bipolar disorder and major depressive disorder compared to population controls. However, this observation is largely attributable to the part of the genetic risk that bipolar disorder or major depressive disorder share with schizophrenia due to genetic correlation, rather than the affective portion of the genetic risk unique to them. These findings suggest that a complete interpretation of cross-disorder polygenic risks in multiplex families requires an assessment of the relative contribution of shared versus unique genetic factors to account for genetic correlations across psychiatric disorders.

12.
Noncoding RNA ; 8(4)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36005827

RESUMEN

Alcohol use disorder (AUD) is a complex, chronic, debilitating condition impacting millions worldwide. Genetic, environmental, and epigenetic factors are known to contribute to the development of AUD. Long non-coding RNAs (lncRNAs) are a class of regulatory RNAs, commonly referred to as the "dark matter" of the genome, with little to no protein-coding potential. LncRNAs have been implicated in numerous processes critical for cell survival, suggesting that they play important functional roles in regulating different cell processes. LncRNAs were also shown to display higher tissue specificity than protein-coding genes and have a higher abundance in the brain and central nervous system, demonstrating a possible role in the etiology of psychiatric disorders. Indeed, genetic (e.g., genome-wide association studies (GWAS)), molecular (e.g., expression quantitative trait loci (eQTL)) and epigenetic studies from postmortem brain tissues have identified a growing list of lncRNAs associated with neuropsychiatric and substance use disorders. Given that the expression patterns of lncRNAs have been associated with widespread changes in the transcriptome, including methylation, chromatin architecture, and activation or suppression of translational activity, the regulatory nature of lncRNAs may be ubiquitous and an innate component of gene regulation. In this review, we present a synopsis of the functional impact that lncRNAs may play in the etiology of AUD. We also discuss the classifications of lncRNAs, their known functional roles, and therapeutic advancements in the field of lncRNAs to further clarify the functional relationship between lncRNAs and AUD.

13.
Transl Psychiatry ; 12(1): 291, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864105

RESUMEN

Multiplex families have higher recurrence risk of schizophrenia compared to the families of sporadic cases, but the source of this increased recurrence risk is unknown. We used schizophrenia genome-wide association study data (N = 156,509) to construct polygenic risk scores (PRS) in 1005 individuals from 257 multiplex schizophrenia families, 2114 ancestry-matched sporadic cases, and 2205 population controls, to evaluate whether increased PRS can explain the higher recurrence risk of schizophrenia in multiplex families compared to ancestry-matched sporadic cases. Using mixed-effects logistic regression with family structure modeled as a random effect, we show that SCZ PRS in familial cases does not differ significantly from sporadic cases either with, or without family history (FH) of psychotic disorders (All sporadic cases p = 0.90, FH+ cases p = 0.88, FH- cases p = 0.82). These results indicate that increased burden of common schizophrenia risk variation as indexed by current SCZ PRS, is unlikely to account for the higher recurrence risk of schizophrenia in multiplex families. In the absence of elevated PRS, segregation of rare risk variation or environmental influences unique to the families may explain the increased familial recurrence risk. These findings also further validate a genetically influenced psychosis spectrum, as shown by a continuous increase of common SCZ risk variation burden from unaffected relatives to schizophrenia cases in multiplex families. Finally, these results suggest that common risk variation loading are unlikely to be predictive of schizophrenia recurrence risk in the families of index probands, and additional components of genetic risk must be identified and included in order to improve recurrence risk prediction.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial , Trastornos Psicóticos/genética , Factores de Riesgo , Esquizofrenia/epidemiología , Esquizofrenia/genética
14.
Brain Behav Immun ; 104: 183-190, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35714915

RESUMEN

Common genetic variants identified in genome-wide association studies (GWAS) show varying degrees of genetic pleiotropy across complex human disorders. Clinical studies of schizophrenia (SCZ) suggest that in addition to neuropsychiatric symptoms, patients with SCZ also show variable immune dysregulation. Epidemiological studies of multiple sclerosis (MS), an autoimmune, neurodegenerative disorder of the central nervous system, suggest that in addition to the manifestation of neuroinflammatory complications, patients with MS may also show co-occurring neuropsychiatric symptoms with disease progression. In this study, we analyzed the largest available GWAS datasets for SCZ (N = 161,405) and MS (N = 41,505) using Gaussian causal mixture modeling (MiXeR) and conditional/conjunctional false discovery rate (condFDR) frameworks to explore and quantify the shared genetic architecture of these two complex disorders at common variant level. Despite detecting only a negligible genetic correlation (rG = 0.057), we observe polygenic overlap between SCZ and MS, and a substantial genetic enrichment in SCZ conditional on associations with MS, and vice versa. By leveraging this cross-disorder enrichment, we identified 36 loci jointly associated with SCZ and MS at conjunctional FDR < 0.05 with mixed direction of effects. Follow-up functional analysis of the shared loci implicates candidate genes and biological processes involved in immune response and B-cell receptor signaling pathways. In conclusion, this study demonstrates the presence of polygenic overlap between SCZ and MS in the absence of a genetic correlation and provides new insights into the shared genetic architecture of these two disorders at the common variant level.

15.
iScience ; 25(2): 103760, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35036860

RESUMEN

Impressive global efforts have identified both rare and common gene variants associated with severe COVID-19 using sequencing technologies. However, these studies lack the sensitivity to accurately detect several classes of variants, especially large structural variants (SVs), which account for a substantial proportion of genetic diversity including clinically relevant variation. We performed optical genome mapping on 52 severely ill COVID-19 patients to identify rare/unique SVs as decisive predisposition factors associated with COVID-19. We identified 7 SVs involving genes implicated in two key host-viral interaction pathways: innate immunity and inflammatory response, and viral replication and spread in nine patients, of which SVs in STK26 and DPP4 genes are the most intriguing candidates. This study is the first to systematically assess the potential role of SVs in the pathogenesis of COVID-19 severity and highlights the need to evaluate SVs along with sequencing variants to comprehensively associate genomic information with interindividual variability in COVID-19 phenotypes.

16.
Addict Biol ; 26(6): e13071, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34164896

RESUMEN

Our lab and others have shown that chronic alcohol use leads to gene and miRNA expression changes across the mesocorticolimbic (MCL) system. Circular RNAs (circRNAs) are noncoding RNAs that form closed-loop structures and are reported to alter gene expression through miRNA sequestration, thus providing a potentially novel neurobiological mechanism for the development of alcohol dependence (AD). Genome-wide expression of circRNA was assessed in the nucleus accumbens (NAc) from 32 AD-matched cases/controls. Significant circRNAs (unadj. p ≤ 0.05) were identified via regression and clustered in circRNA networks via weighted gene co-expression network analysis (WGCNA). CircRNA interactions with previously generated mRNA and miRNA were detected via correlation and bioinformatic analyses. Significant circRNAs (N = 542) clustered in nine significant AD modules (FWER p ≤ 0.05), within which we identified 137 circRNA hubs. We detected 23 significant circRNA-miRNA-mRNA interactions (FDR ≤ 0.10). Among these, circRNA-406742 and miR-1200 significantly interact with the highest number of mRNA, including genes associated with neuronal functioning and alcohol addiction (HRAS, PRKCB, HOMER1, and PCLO). Finally, we integrate genotypic information that revealed 96 significant circRNA expression quantitative trait loci (eQTLs) (unadj. p ≤ 0.002) that showed significant enrichment within recent alcohol use disorder (AUD) and smoking genome-wide association study (GWAS). To our knowledge, this is the first study to examine the role of circRNA in the neuropathology of AD. We show that circRNAs impact mRNA expression by interacting with miRNA in the NAc of AD subjects. More importantly, we provide indirect evidence for the clinical importance of circRNA in the development of AUD by detecting a significant enrichment of our circRNA eQTLs among GWAS of substance abuse.


Asunto(s)
Alcoholismo/genética , MicroARNs/biosíntesis , Núcleo Accumbens/patología , ARN Circular/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Estudio de Asociación del Genoma Completo , Humanos , Fumar/patología
17.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33791774

RESUMEN

MOTIVATION: Rare variant-based analyses are beginning to identify risk genes for neuropsychiatric disorders and other diseases. However, the identified genes only account for a fraction of predicted causal genes. Recent studies have shown that rare damaging variants are significantly enriched in specific gene-sets. Methods which are able to jointly model rare variants and gene-sets to identify enriched gene-sets and use these enriched gene-sets to prioritize additional risk genes could improve understanding of the genetic architecture of diseases. RESULTS: We propose DECO (Integrated analysis of de novo mutations, rare case/control variants and omics information via gene-sets), an integrated method for rare-variant and gene-set analysis. The method can (i) test the enrichment of gene-sets directly within the statistical model, and (ii) use enriched gene-sets to rank existing genes and prioritize additional risk genes for tested disorders. In simulations, DECO performs better than a homologous method that uses only variant data. To demonstrate the application of the proposed protocol, we have applied this approach to rare-variant datasets of schizophrenia. Compared with a method which only uses variant information, DECO is able to prioritize additional risk genes. AVAILABILITY: DECO can be used to analyze rare-variants and biological pathways or cell types for any disease. The package is available on Github https://github.com/hoangtn/DECO.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Mutación , Trastornos del Neurodesarrollo/genética , Esquizofrenia/genética , Biología de Sistemas/métodos , Estudios de Casos y Controles , Simulación por Computador , Análisis Mutacional de ADN/métodos , Humanos , Modelos Estadísticos , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/genética
18.
J Psychiatr Res ; 137: 215-224, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33691233

RESUMEN

While 17% of US adults use tobacco regularly, smoking rates among persons with schizophrenia are upwards of 60%. Research supports a shared etiological basis for smoking and schizophrenia, including findings from genome-wide association studies (GWAS). However, few studies have directly tested whether the same or distinct genetic variants also influence smoking behavior among schizophrenia cases. Using data from the Psychiatric Genomics Consortium (PGC) study of schizophrenia (35476 cases, 46839 controls), we estimated genetic correlations between these traits and tested whether polygenic risk scores (PRS) constructed from the results of smoking behaviors GWAS were associated with schizophrenia risk or smoking behaviors among schizophrenia cases. Results indicated significant genetic correlations of schizophrenia with smoking initiation (rg = 0.159; P = 5.05 × 10-10), cigarettes-smoked-per-day (rg = 0.094; P = 0.006), and age-of-onset of smoking (rg = 0.10; P = 0.009). Comparing smoking behaviors among schizophrenia cases to the general population, we observe positive genetic correlations for smoking initiation (rg = 0.624, P = 0.002) and cigarettes-smoked-per-day (rg = 0.689, P = 0.120). Similarly, TAG-based PRS for smoking initiation and cigarettes-smoked-per-day were significantly associated with smoking initiation (P = 3.49 × 10-5) and cigarettes-smoked-per-day (P = 0.007) among schizophrenia cases. We performed the first GWAS of smoking behavior among schizophrenia cases and identified a novel association with cigarettes-smoked-per-day upstream of the TMEM106B gene on chromosome 7p21.3 (rs148253479, P = 3.18 × 10-8, n = 3520). Results provide evidence of a partially shared genetic basis for schizophrenia and smoking behaviors. Additionally, genetic risk factors for smoking behaviors were largely shared across schizophrenia and non-schizophrenia populations. Future research should address mechanisms underlying these associations to aid both schizophrenia and smoking treatment and prevention efforts.


Asunto(s)
Estudio de Asociación del Genoma Completo , Esquizofrenia , Adulto , Predisposición Genética a la Enfermedad/genética , Genómica , Humanos , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/epidemiología , Esquizofrenia/genética , Fumar/genética
19.
Am J Med Genet B Neuropsychiatr Genet ; 186(1): 16-27, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33576176

RESUMEN

Genotype imputation across populations of mixed ancestry is critical for optimal discovery in large-scale genome-wide association studies (GWAS). Methods for direct imputation of GWAS summary-statistics were previously shown to be practically as accurate as summary statistics produced after raw genotype imputation, while incurring orders of magnitude lower computational burden. Given that direct imputation needs a precise estimation of linkage-disequilibrium (LD) and that most of the methods using a small reference panel for example, ~2,500-subject coming from the 1000 Genome-Project, there is a great need for much larger and more diverse reference panels. To accurately estimate the LD needed for an exhaustive analysis of any cosmopolitan cohort, we developed DISTMIX2. DISTMIX2: (a) uses a much larger and more diverse reference panel compared to traditional reference panels, and (b) can estimate weights of ethnic-mixture based solely on Z-scores, when allele frequencies are not available. We applied DISTMIX2 to GWAS summary-statistics from the psychiatric genetic consortium (PGC). DISTMIX2 uncovered signals in numerous new regions, with most of these findings coming from the rarer variants. Rarer variants provide much sharper location for the signals compared with common variants, as the LD for rare variants extends over a lower distance than for common ones. For example, while the original PGC post-traumatic stress disorder GWAS found only 3 marginal signals for common variants, we now uncover a very strong signal for a rare variant in PKN2, a gene associated with neuronal and hippocampal development. Thus, DISTMIX2 provides a robust and fast (re)imputation approach for most psychiatric GWAS-studies.


Asunto(s)
Estudio de Asociación del Genoma Completo/normas , Trastornos Mentales/diagnóstico , Trastornos Mentales/genética , Polimorfismo de Nucleótido Simple , Estudios de Cohortes , Frecuencia de los Genes , Humanos , Desequilibrio de Ligamiento , Fenotipo , Estándares de Referencia , Programas Informáticos
20.
PLoS One ; 15(12): e0243857, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33332381

RESUMEN

Chronic alcohol abuse has been linked to the disruption of executive function and allostatic conditioning of reward response dysregulation in the mesocorticolimbic pathway (MCL). Here, we analyzed genome-wide mRNA and miRNA expression from matched cases with alcohol dependence (AD) and controls (n = 35) via gene network analysis to identify unique and shared biological processes dysregulated in the prefrontal cortex (PFC) and nucleus accumbens (NAc). We further investigated potential mRNA/miRNA interactions at the network and individual gene expression levels to identify the neurobiological mechanisms underlying AD in the brain. By using genotyped and imputed SNP data, we identified expression quantitative trait loci (eQTL) uncovering potential genetic regulatory elements for gene networks associated with AD. At a Bonferroni corrected p≤0.05, we identified significant mRNA (NAc = 6; PFC = 3) and miRNA (NAc = 3; PFC = 2) AD modules. The gene-set enrichment analyses revealed modules preserved between PFC and NAc to be enriched for immune response processes, whereas genes involved in cellular morphogenesis/localization and cilia-based cell projection were enriched in NAc modules only. At a Bonferroni corrected p≤0.05, we identified significant mRNA/miRNA network module correlations (NAc = 6; PFC = 4), which at an individual transcript level implicated miR-449a/b as potential regulators for cellular morphogenesis/localization in NAc. Finally, we identified eQTLs (NAc: mRNA = 37, miRNA = 9; PFC: mRNA = 17, miRNA = 16) which potentially mediate alcohol's effect in a brain region-specific manner. Our study highlights the neurotoxic effects of chronic alcohol abuse as well as brain region specific molecular changes that may impact the development of alcohol addiction.


Asunto(s)
Alcoholismo/genética , Redes Reguladoras de Genes , Núcleo Accumbens/metabolismo , Corteza Prefrontal/metabolismo , Enfermedad Crónica , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Metalotioneína/genética , Metalotioneína/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Núcleo Accumbens/patología , Corteza Prefrontal/patología , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...