Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Phycol ; 59(5): 879-892, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37596958

RESUMEN

Algal carbon-to-nitrogen (C:N) and carbon-to-phosphorus (C:P) ratios are fundamental for understanding many oceanic biogeochemical processes, such as nutrient flux and climate regulation. We synthesized literature data (444 species, >400 locations) and collected original samples from Tasmania, Australia (51 species, 10 locations) to update the global ratios of seaweed carbon-to-nitrogen (C:N) and carbon-to-phosphorus (C:P). The updated global mean molar ratio for seaweed C:N is 20 (ranging from 6 to 123) and for C:P is 801 (ranging from 76 to 4102). The C:N and C:P ratios were significantly influenced by seawater inorganic nutrient concentrations and seasonality. Additionally, C:N ratios varied by phyla. Brown seaweeds (Ochrophyta, Phaeophyceae) had the highest mean C:N of 27.5 (range: 7.6-122.5), followed by green seaweeds (Chlorophyta) of 17.8 (6.2-54.3) and red seaweeds (Rhodophyta) of 14.8 (5.6-77.6). We used the updated C:N and C:P values to compare seaweed tissue stoichiometry with the most recently reported values for plankton community stoichiometry. Our results show that seaweeds have on average 2.8 and 4.0 times higher C:N and C:P than phytoplankton, indicating seaweeds can assimilate more carbon in their biomass for a given amount of nutrient resource. The stoichiometric comparison presented herein is central to the discourse on ocean afforestation (the deliberate replacement of phytoplankton with seaweeds to enhance the ocean biological carbon sink) by contributing to the understanding of the impact of nutrient reallocation from phytoplankton to seaweeds under large-scale seaweed cultivation.

4.
Sci Total Environ ; 885: 163699, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37149169

RESUMEN

Seaweed (macroalgae) has attracted attention globally given its potential for climate change mitigation. A topical and contentious question is: Can seaweeds' contribution to climate change mitigation be enhanced at globally meaningful scales? Here, we provide an overview of the pressing research needs surrounding the potential role of seaweed in climate change mitigation and current scientific consensus via eight key research challenges. There are four categories where seaweed has been suggested to be used for climate change mitigation: 1) protecting and restoring wild seaweed forests with potential climate change mitigation co-benefits; 2) expanding sustainable nearshore seaweed aquaculture with potential climate change mitigation co-benefits; 3) offsetting industrial CO2 emissions using seaweed products for emission abatement; and 4) sinking seaweed into the deep sea to sequester CO2. Uncertainties remain about quantification of the net impact of carbon export from seaweed restoration and seaweed farming sites on atmospheric CO2. Evidence suggests that nearshore seaweed farming contributes to carbon storage in sediments below farm sites, but how scalable is this process? Products from seaweed aquaculture, such as the livestock methane-reducing seaweed Asparagopsis or low carbon food resources show promise for climate change mitigation, yet the carbon footprint and emission abatement potential remains unquantified for most seaweed products. Similarly, purposely cultivating then sinking seaweed biomass in the open ocean raises ecological concerns and the climate change mitigation potential of this concept is poorly constrained. Improving the tracing of seaweed carbon export to ocean sinks is a critical step in seaweed carbon accounting. Despite carbon accounting uncertainties, seaweed provides many other ecosystem services that justify conservation and restoration and the uptake of seaweed aquaculture will contribute to the United Nations Sustainable Development Goals. However, we caution that verified seaweed carbon accounting and associated sustainability thresholds are needed before large-scale investment into climate change mitigation from seaweed projects.


Asunto(s)
Ecosistema , Algas Marinas , Dióxido de Carbono , Cambio Climático , Secuestro de Carbono , Carbono
5.
J Plankton Res ; 44(4): 485-495, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898813

RESUMEN

The necessity to understand the influence of global ocean change on biota has exposed wide-ranging gaps in our knowledge of the fundamental principles that underpin marine life. Concurrently, physiological research has stagnated, in part driven by the advent and rapid evolution of molecular biological techniques, such that they now influence all lines of enquiry in biological oceanography. This dominance has led to an implicit assumption that physiology is outmoded, and advocacy that ecological and biogeochemical models can be directly informed by omics. However, the main modeling currencies are biological rates and biogeochemical fluxes. Here, we ask: how do we translate the wealth of information on physiological potential from omics-based studies to quantifiable physiological rates and, ultimately, to biogeochemical fluxes? Based on the trajectory of the state-of-the-art in biomedical sciences, along with case-studies from ocean sciences, we conclude that it is unlikely that omics can provide such rates in the coming decade. Thus, while physiological rates will continue to be central to providing projections of global change biology, we must revisit the metrics we rely upon. We advocate for the co-design of a new generation of rate measurements that better link the benefits of omics and physiology.

7.
Nature ; 605(7911): 696-700, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35614245

RESUMEN

Diatoms account for up to 40% of marine primary production1,2 and require silicic acid to grow and build their opal shell3. On the physiological and ecological level, diatoms are thought to be resistant to, or even benefit from, ocean acidification4-6. Yet, global-scale responses and implications for biogeochemical cycles in the future ocean remain largely unknown. Here we conducted five in situ mesocosm experiments with natural plankton communities in different biomes and find that ocean acidification increases the elemental ratio of silicon (Si) to nitrogen (N) of sinking biogenic matter by 17 ± 6 per cent under [Formula: see text] conditions projected for the year 2100. This shift in Si:N seems to be caused by slower chemical dissolution of silica at decreasing seawater pH. We test this finding with global sediment trap data, which confirm a widespread influence of pH on Si:N in the oceanic water column. Earth system model simulations show that a future pH-driven decrease in silica dissolution of sinking material reduces the availability of silicic acid in the surface ocean, triggering a global decline of diatoms by 13-26 per cent due to ocean acidification by the year 2200. This outcome contrasts sharply with the conclusions of previous experimental studies, thereby illustrating how our current understanding of biological impacts of ocean change can be considerably altered at the global scale through unexpected feedback mechanisms in the Earth system.


Asunto(s)
Diatomeas , Silicio , Concentración de Iones de Hidrógeno , Océanos y Mares , Dinámica Poblacional , Agua de Mar , Ácido Silícico , Silicio/análisis , Dióxido de Silicio
8.
Nat Ecol Evol ; 6(6): 675-683, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35449458

RESUMEN

Our scientific understanding of climate change makes clear the necessity for both emission reduction and carbon dioxide removal (CDR). The ocean with its large surface area, great depths and long coastlines is central to developing CDR approaches commensurate with the scale needed to limit warming to below 2 °C. Many proposed marine CDR approaches rely on spatial upscaling along with enhancement and/or acceleration of the rates of naturally occurring processes. One such approach is 'ocean afforestation', which involves offshore transport and concurrent growth of nearshore macroalgae (seaweed), followed by their export into the deep ocean. The purposeful occupation for months of open ocean waters by macroalgae, which do not naturally occur there, will probably affect offshore ecosystems through a range of biological threats, including altered ocean chemistry and changed microbial physiology and ecology. Here, we present model simulations of ocean afforestation and link these to lessons from other examples of offshore dispersal, including rafting plastic debris, and discuss the ramifications for offshore ecosystems. We explore what additional metrics are required to assess the ecological implications of this proposed CDR. In our opinion, these ecological metrics must have equal weight to CDR capacity in the development of initial trials, pilot studies and potential licensing.


Asunto(s)
Ecosistema , Algas Marinas , Dióxido de Carbono , Cambio Climático , Océanos y Mares , Algas Marinas/fisiología
9.
J Phycol ; 58(3): 347-363, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35286717

RESUMEN

Carbon sequestration is defined as the secure storage of carbon-containing molecules for >100 years, and in the context of carbon dioxide removal for climate mitigation, the origin of this CO2 is from the atmosphere. On land, trees globally sequester substantial amounts of carbon in woody biomass, and an analogous role for seaweeds in ocean carbon sequestration has been suggested. The purposeful expansion of natural seaweed beds and aquaculture systems, including into the open ocean (ocean afforestation), has been proposed as a method of increasing carbon sequestration and use in carbon trading and offset schemes. However, to verify whether CO2 fixed by seaweeds through photosynthesis leads to carbon sequestration is extremely complex in the marine environment compared to terrestrial systems, because of the need to jointly consider: the comparatively rapid turnover of seaweed biomass, tracing the fate of carbon via particulate and dissolved organic carbon pathways in dynamic coastal waters, and the key role of atmosphere-ocean CO2 exchange. We propose a Forensic Carbon Accounting approach, in which a thorough analysis of carbon flows between the atmosphere and ocean, and into and out of seaweeds would be undertaken, for assessing the magnitude of CO2 removal and robust attribution of carbon sequestration to seaweeds.


Asunto(s)
Secuestro de Carbono , Algas Marinas , Atmósfera , Dióxido de Carbono/metabolismo , Clima , Algas Marinas/metabolismo
10.
Sci Total Environ ; 810: 152252, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896493

RESUMEN

Ocean acidification (OA) is one of the most critical anthropogenic threats to marine ecosystems. While significant ecological responses of plankton communities to OA have been revealed mainly by small-scale laboratory approaches, the interactive effect of OA-related changes on zooplankton metabolism and their biogeochemical implications in the natural environment still remains less well understood. Here, we explore the responses of zooplankton respiration and ammonium excretion, two key processes in the nutrient cycling, to high pCO2 levels in a 9-week in situ mesocosm experiment conducted during the autumn oligotrophic season in the subtropical northeast Atlantic. By simulating an upwelling event halfway through the study, we further evaluated the combined effects of OA and nutrient availability on the physiology of micro-and mesozooplankton. OA conditions generally resulted in a reduction in the biomass-specific metabolic and enzymatic rates, particularly in the mesozooplankton community. The situation reversed after the nutrient-rich deep-water addition, which initially promoted a diatom bloom and increased heterotrophic activities in all mesocosms. Under high pCO2 conditions (>800 µatm), however, the nutrient fertilization triggered the proliferation of the harmful alga Vicicitus globosus, with important consequences for the metabolic performance of the two zooplankton size classes. Here, the zooplankton contribution to the remineralization of organic matter and nitrogen regeneration dropped by 30% and 24%, respectively, during the oligotrophic period, and by 40% and 70% during simulated upwelling. Overall, our results indicate a potential reduction in the biogeochemical role of zooplankton under future ocean conditions, with more evident effects on the large mesozooplankton and during high productivity events.


Asunto(s)
Ecosistema , Zooplancton , Animales , Dióxido de Carbono , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar
11.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34544897

RESUMEN

Mitigating global climate change will require gigaton-scale carbon dioxide removal (CDR) as a supplement to rapid emissions reduction. The oceans cover 71% of the Earth surface and have the potential to provide much of the required CDR. However, none of the proposed marine CDR (mCDR) methods is sufficiently well understood to determine their real-world efficiency and environmental side effects. Here, we argue that using natural mCDR analogs should become the third interconnecting pillar in the mCDR assessment as they bridge the gap between numerical simulations (i.e., large scale/reduced complexity) and experimental studies (i.e., small scale/high complexity). Natural mCDR analogs occur at no cost, can provide a wealth of data to inform mCDR, and do not require legal permission or social license for their study. We propose four simple criteria to identify particularly useful analogs: 1) large scale, 2) abruptness of perturbation, 3) availability of unperturbed control sites, and 4) reoccurrence. Based on these criteria, we highlight four examples: 1) equatorial upwelling as a natural analog for artificial upwelling, 2) downstream of Kerguelen Island for ocean iron fertilization, 3) the Black and Caspian Seas for ocean alkalinity enhancement, and 4) the Great Atlantic Sargassum Belt for ocean afforestation. These natural analogs provide a reality check for experimental assessments and numerical modeling of mCDR. Ultimately, projections of mCDR efficacy and sustainability supported by observations from natural analogs will provide the real-world context for the public debate and will facilitate political decisions on mCDR implementation. We anticipate that a rigorous investigation of natural analogs will fast-forward the urgently needed assessment of mCDR.

12.
Nat Commun ; 12(1): 2556, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963184

RESUMEN

Ensuring that global warming remains <2 °C requires rapid CO2 emissions reduction. Additionally, 100-900 gigatons CO2 must be removed from the atmosphere by 2100 using a portfolio of CO2 removal (CDR) methods. Ocean afforestation, CDR through basin-scale seaweed farming in the open ocean, is seen as a key component of the marine portfolio. Here, we analyse the CDR potential of recent re-occurring trans-basin belts of the floating seaweed Sargassum in the (sub)tropical North Atlantic as a natural analogue for ocean afforestation. We show that two biogeochemical feedbacks, nutrient reallocation and calcification by encrusting marine life, reduce the CDR efficacy of Sargassum by 20-100%. Atmospheric CO2 influx into the surface seawater, after CO2-fixation by Sargassum, takes 2.5-18 times longer than the CO2-deficient seawater remains in contact with the atmosphere, potentially hindering CDR verification. Furthermore, we estimate that increased ocean albedo, due to floating Sargassum, could influence climate radiative forcing more than Sargassum-CDR. Our analysis shows that multifaceted Earth-system feedbacks determine the efficacy of ocean afforestation.


Asunto(s)
Atmósfera/análisis , Dióxido de Carbono/análisis , Calentamiento Global/prevención & control , Sargassum/aislamiento & purificación , Océano Atlántico , Biomasa , Calcio/análisis , Ecosistema , Retroalimentación , Concentración de Iones de Hidrógeno , Agua de Mar/análisis , Agua de Mar/química , Temperatura , Factores de Tiempo , Clima Tropical
13.
New Phytol ; 228(6): 1710-1716, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32654139

RESUMEN

Phytoplankton growth rate is a key variable controlling species succession and ecosystem structure throughout the surface ocean. Carbonate chemistry conditions are known to influence phytoplankton growth rates but there is no conceptual framework allowing us to compare growth rate responses across taxa. Here we analyse the literature to show that phytoplankton growth rates follow an optimum curve response pattern whenever the tested species is exposed to a sufficiently large gradient in proton (H+ ) concentrations. Based on previous findings with coccolithophores and diatoms, we argue that this 'universal reaction norm' is shaped by the stimulating influence of increasing inorganic carbon substrate (left side of the optimum) and the inhibiting influence of increase H+ (right side of the optimum). We envisage that exploration of carbonate chemistry-dependent optimum curves as a default experimental approach will boost our mechanistic understanding of phytoplankton responses to ocean acidification, like temperature curves have already boosted our mechanistic understanding to global warming.


Asunto(s)
Dióxido de Carbono , Fitoplancton , Ecosistema , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar
14.
Harmful Algae ; 92: 101697, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32113604

RESUMEN

Enrichment of the oceans with CO2 may be beneficial for some marine phytoplankton, including harmful algae. Numerous laboratory experiments provided valuable insights into the effects of elevated pCO2 on the growth and physiology of harmful algal species, including the production of phycotoxins. Experiments close to natural conditions are the next step to improve predictions, as they consider the complex interplay between biotic and abiotic factors that can confound the direct effects of ocean acidification. We therefore investigated the effect of ocean acidification on the occurrence and abundance of phycotoxins in bulk plankton samples during a long-term mesocosm experiment in the Gullmar Fjord, Sweden, an area frequently experiencing harmful algal blooms. During the experimental period, a total of seven phycotoxin-producing harmful algal genera were identified in the fjord, and in accordance, six toxin classes were detected. However, within the mesocosms, only domoic acid and the corresponding producer Pseudo-nitzschia spp. was observed. Despite high variation within treatments, significantly higher particulate domoic acid contents were measured in the mesocosms with elevated pCO2. Higher particulate domoic acid contents were additionally associated with macronutrient limitation. The risks associated with potentially higher phycotoxin levels in the future ocean warrants attention and should be considered in prospective monitoring strategies for coastal marine waters.


Asunto(s)
Fitoplancton , Agua de Mar , Concentración de Iones de Hidrógeno , Ácido Kaínico/análogos & derivados , Estudios Prospectivos , Suecia
15.
Nat Commun ; 10(1): 5261, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748607

RESUMEN

Marine phytoplankton growth at high latitudes is extensively limited by iron availability. Icebergs are a vector transporting the bioessential micronutrient iron into polar oceans. Therefore, increasing iceberg fluxes due to global warming have the potential to increase marine productivity and carbon export, creating a negative climate feedback. However, the magnitude of the iceberg iron flux, the subsequent fertilization effect and the resultant carbon export have not been quantified. Using a global analysis of iceberg samples, we reveal that iceberg iron concentrations vary over 6 orders of magnitude. Our results demonstrate that, whilst icebergs are the largest source of iron to the polar oceans, the heterogeneous iron distribution within ice moderates iron delivery to offshore waters and likely also affects the subsequent ocean iron enrichment. Future marine productivity may therefore be not only sensitive to increasing total iceberg fluxes, but also to changing iceberg properties, internal sediment distribution and melt dynamics.


Asunto(s)
Cubierta de Hielo/química , Hierro/análisis , Regiones Antárticas , Regiones Árticas , Argentina , Carbono/metabolismo , Chile , Congelación , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Calentamiento Global , Groenlandia , Islandia , Hierro/metabolismo , Océanos y Mares , Fitoplancton/metabolismo , Agua de Mar/análisis , Agua de Mar/química , Svalbard
16.
J Plankton Res ; 40(4): 391-406, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30046201

RESUMEN

An indoor mesocosm experiment was carried out to investigate the combined effects of ocean acidification and warming on the species composition and biogeochemical element cycling during a winter/spring bloom with a natural phytoplankton assemblage from the Kiel fjord, Germany. The experimental setup consisted of a "Control" (ambient temperature of ~4.8 °C and ~535 ± 25 µatm pCO2), a "High-CO2" treatment (ambient temperature and initially 1020 ± 45 µatm pCO2) and a "Greenhouse" treatment (~8.5 °C and initially 990 ± 60 µatm pCO2). Nutrient replete conditions prevailed at the beginning of the experiment and light was provided at in situ levels upon reaching pCO2 target levels. A diatom-dominated bloom developed in all treatments with Skeletonema costatum as the dominant species but with an increased abundance and biomass contribution of larger diatom species in the Greenhouse treatment. Conditions in the Greenhouse treatment accelerated bloom development with faster utilization of inorganic nutrients and an earlier peak in phytoplankton biomass compared to the Control and High CO2 but no difference in maximum concentration of particulate organic matter (POM) between treatments. Loss of POM in the Greenhouse treatment, however, was twice as high as in the Control and High CO2 treatment at the end of the experiment, most likely due to an increased proportion of larger diatom species in that treatment. We hypothesize that the combination of warming and acidification can induce shifts in diatom species composition with potential feedbacks on biogeochemical element cycling.

17.
PLoS One ; 13(5): e0197502, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29799856

RESUMEN

Ongoing acidification of the ocean through uptake of anthropogenic CO2 is known to affect marine biota and ecosystems with largely unknown consequences for marine food webs. Changes in food web structure have the potential to alter trophic transfer, partitioning, and biogeochemical cycling of elements in the ocean. Here we investigated the impact of realistic end-of-the-century CO2 concentrations on the development and partitioning of the carbon, nitrogen, phosphorus, and silica pools in a coastal pelagic ecosystem (Gullmar Fjord, Sweden). We covered the entire winter-to-summer plankton succession (100 days) in two sets of five pelagic mesocosms, with one set being CO2 enriched (~760 µatm pCO2) and the other one left at ambient CO2 concentrations. Elemental mass balances were calculated and we highlight important challenges and uncertainties we have faced in the closed mesocosm system. Our key observations under high CO2 were: (1) A significantly amplified transfer of carbon, nitrogen, and phosphorus from primary producers to higher trophic levels, during times of regenerated primary production. (2) A prolonged retention of all three elements in the pelagic food web that significantly reduced nitrogen and phosphorus sedimentation by about 11 and 9%, respectively. (3) A positive trend in carbon fixation (relative to nitrogen) that appeared in the particulate matter pool as well as the downward particle flux. This excess carbon counteracted a potential reduction in carbon sedimentation that could have been expected from patterns of nitrogen and phosphorus fluxes. Our findings highlight the potential for ocean acidification to alter partitioning and cycling of carbon and nutrients in the surface ocean but also show that impacts are temporarily variable and likely depending upon the structure of the plankton food web.


Asunto(s)
Ecosistema , Océanos y Mares , Agua de Mar/química , Animales , Biomasa , Dióxido de Carbono/química , Secuestro de Carbono , Simulación por Computador , Sedimentos Geológicos/química , Concentración de Iones de Hidrógeno , Modelos Teóricos , Estaciones del Año , Suecia , Zooplancton/crecimiento & desarrollo , Zooplancton/metabolismo
18.
Nat Ecol Evol ; 2(5): 836-840, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29556079

RESUMEN

Ocean acidification-the decrease in seawater pH due to rising CO2 concentrations-has been shown to lower survival in early life stages of fish and, as a consequence, the recruitment of populations including commercially important species. To date, ocean-acidification studies with fish larvae have focused on the direct physiological impacts of elevated CO2, but largely ignored the potential effects of ocean acidification on food web interactions. In an in situ mesocosm study on Atlantic herring (Clupea harengus) larvae as top predators in a pelagic food web, we account for indirect CO2 effects on larval survival mediated by changes in food availability. The community was exposed to projected end-of-the-century CO2 conditions (~760 µatm pCO2) over a period of 113 days. In contrast with laboratory studies that reported a decrease in fish survival, the survival of the herring larvae in situ was significantly enhanced by 19 ± 2%. Analysis of the plankton community dynamics suggested that the herring larvae benefitted from a CO2-stimulated increase in primary production. Such indirect effects may counteract the possible direct negative effects of ocean acidification on the survival of fish early life stages. These findings emphasize the need to assess the food web effects of ocean acidification on fish larvae before we can predict even the sign of change in fish recruitment in a high-CO2 ocean.


Asunto(s)
Dióxido de Carbono/análisis , Cambio Climático , Peces/fisiología , Cadena Alimentaria , Agua de Mar/química , Animales , Longevidad , Océanos y Mares
19.
Nat Ecol Evol ; 2(4): 611-613, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29434348

RESUMEN

Climate change challenges plankton communities, but evolutionary adaptation could mitigate the potential impacts. Here, we tested with the phytoplankton species Emiliania huxleyi whether adaptation to a stressor under laboratory conditions leads to equivalent fitness gains in a more natural environment. We found that fitness advantages that had evolved under laboratory conditions were masked by pleiotropic effects in natural plankton communities. Moreover, new genotypes with highly variable competitive abilities evolved on timescales significantly shorter than climate change.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Aptitud Genética , Haptophyta/fisiología , Interacciones Microbianas/fisiología , Pleiotropía Genética , Genotipo , Haptophyta/genética , Fitoplancton/genética , Fitoplancton/fisiología
20.
PLoS One ; 12(11): e0188198, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29190760

RESUMEN

The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 µatm) in five of them while the other five served as controls (380 µatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2-2 µm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.


Asunto(s)
Concentración de Iones de Hidrógeno , Océanos y Mares , Fitoplancton/metabolismo , Biomasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...