Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Int J Psychophysiol ; 200: 112342, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38614440

RESUMEN

Cardinal characteristics of somatoform disorders (SFDs) are worry of illness, and impaired affective processing. We used relative frontal alpha asymmetry (FAA), a method to measure functional lateralization of affective processing, to investigate psychobiological correlates of SFDs. With alpha activity being inversely related to cortical network activity, relative FAA refers to alpha activity on the right frontal lobe minus alpha activity on the left frontal lobe. Less relative left frontal activity, reflected by negative FAA scores, is associated with lower positive and greater negative affectivity, such as observed in depression. Due to its negative affective component (illness anxiety), we expected to find less relative left frontal activity pattern in SFDs, and positive associations with self-reported chronic stress and depression symptoms. We recorded resting-state EEG activity with 64 electrodes, placed in a 10-10 system in 26 patients with a primary SFD, 23 patients with a major depressive disorder and 25 healthy control participants. The groups did not differ in FAA. Nevertheless, across all participants, less relative left frontal activity was associated with chronic stress and depression symptoms. We concluded that FAA may not serve as an indicator of SFDs. As the relationship of FAA and depressive symptoms was fully mediated by chronic stress, future studies have to clarify whether the association between FAA and chronic stress may represent a shared underlying factor for the manifestation of mental health complaints, such as depression.

2.
Transl Vis Sci Technol ; 13(4): 25, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38639931

RESUMEN

Purpose: The purpose of this study was to determine and compare binocular summation (BiS) of conventional visual acuity (cVA) versus hyperacuity (hVA) for photopic and scotopic luminance conditions as a potential biomarker to assess the outcome of interventions on binocular function. Methods: Sixteen young adults (age range [years] = 21-31; 8 women; cVA logMAR < 0.0) participated in this study. The Freiburg Visual Acuity Test (FrACT) was used for VA testing and retested on another day. Both cVA and hVA were determined for dark grey optotypes on light grey background. Participants underwent 40 minutes of dark adaptation prior to scotopic VA testing. Binocular and monocular VA testing was performed. The eye with better VA over the 2 days of testing was selected, the BiS was quantified (binocular VA - better monocular VA) and repeated measures ANOVAs were performed. Results: Binocular VA exceeded monocular VA for all luminance conditions, VA-types, and sessions. We report BiS estimates for photopic and scotopic cVA and hVA, (logMAR BiS ± SEM [decimal BiS]): photopic = -0.01 ± 0.01 [1.03] and -0.06 ± 0.03 [1.15]; and scotopic = -0.05 ± 0.01 [1.12] and -0.11 ± 0.04 [1.28], respectively). Improvement for binocular vision estimates ranged from 0.01 to 0.11 logMAR. A repeated-measures ANOVA (RM ANOVA) did not reveal significant effects of LUMINANCE or VA TYPE on BiS, albeit a trend for strongest BiS for scotopic hVA (15% vs. 28%, photopic versus scotopic, respectively) and weakest for photopic cVA (3% vs. 12%, photopic versus scotopic conditions, respectively). Conclusions: Our results indicate that BiS of VA is relevant to scotopic and photopic hVA and cVA. It appears therefore a plausible candidate biomarker to assess the outcome of retinal therapies restoring rod or cone function on binocular vision. Translational Relevance: Binocular summation of visual acuity might serve as a clinical biomarker to monitor therapy outcome on binocular rod and cone-mediated vision.


Asunto(s)
Pruebas de Visión , Visión Binocular , Adulto Joven , Humanos , Femenino , Adulto , Agudeza Visual , Pruebas de Visión/métodos , Visión Ocular , Biomarcadores
3.
Invest Ophthalmol Vis Sci ; 65(4): 11, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38573619

RESUMEN

Purpose: Our primary aim was to compare adult full-field ERG (ffERG) responses in albinism, idiopathic infantile nystagmus (IIN), and controls. A secondary aim was to investigate the effect of within-subject changes in nystagmus eye movements on ffERG responses. Methods: Dilated Ganzfeld flash ffERG responses were recorded using DTL electrodes under conditions of dark (standard and dim flash) and light adaptation in 68 participants with albinism, 43 with IIN, and 24 controls. For the primary aim, the effect of group and age on ffERG responses was investigated. For the secondary aim, null region characteristics were determined using eye movements recorded prior to ffERG recordings. ffERG responses were recorded near and away from the null regions of 18 participants also measuring the success rate of recordings. Results: For the primary aim, age-adjusted photopic a- and b-wave amplitudes were consistently smaller in IIN compared with controls (P < 0.0001), with responses in both groups decreasing with age. In contrast, photopic a-wave amplitudes increased with age in albinism (P = 0.0035). For the secondary aim, more intense nystagmus significantly reduced the success rate of measurable responses. Within-subject changes in nystagmus intensity generated small, borderline significant differences in photopic b-wave peak times and a-and b-wave amplitudes under scotopic conditions with standard flash. Conclusions: Age-adjusted photopic ffERG responses are significantly reduced in IIN adding to the growing body of evidence of retinal abnormalities in IIN. Differences between photopic responses in albinism and controls depend on age. Success at obtaining ffERG responses could be improved by recording responses at the null region.


Asunto(s)
Albinismo , Enfermedades Genéticas Ligadas al Cromosoma X , Nistagmo Congénito , Nistagmo Patológico , Adulto , Humanos , Nistagmo Patológico/diagnóstico , Movimientos Oculares
4.
Transl Vis Sci Technol ; 13(3): 14, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38502142

RESUMEN

Purpose: To determine the testability, performance, and test-retest variability (TRV) of visual acuity (VA) assessment using the Freiburg Visual Acuity Test (FrACT) compared to the LEA Symbols Test (LEA) in preschool children. Methods: In 134 preschool children aged 3.0 to 6.8 years, monocular VA of each eye was measured twice with a four-orientation Landolt C version of the FrACT and once with the LEA. FrACT runs were preceded by a binocular run for explanatory purposes. Test order alternated between subjects. Optotypes were presented on a computer monitor (FrACT) or on cards (LEA) at a distance of 3 m. Results: Overall, 68% completed the FrACT (91/134 children) and 88% completed the LEA (118/134 children). Testability depended on age: FrACT, 19% (<4 years) and 87% (≥4 years); LEA, 70% (<4 years) and 95% (≥4 years). Mean ± SD VA difference between tests was 0.11 ± 0.19 logarithm of the minimum angle of resolution [logMAR], with LEA reporting better acuity. The difference depended on age (0.27 ± 0.23 logMAR [<4 years], 0.09 ± 0.18 logMAR [≥4 years], P < 0.001) and on test sequence (higher age dependence of FrACT VAs for LEA first, P < 0.001). The 95% limits of agreement for the FrACT TRV were ±0.298 logMAR. Conclusions: The examiner-independent FrACT, using international reference Landolt C optotypes, can be used to assess VA in preschool children aged ≥4 years, with reliability comparable to other pediatric VA tests. Translational Relevance: Use of the automated FrACT for VA assessment in preschool children may benefit objectivity and validity as it is a computerized test and employs the international reference Landolt C optotype.


Asunto(s)
Pruebas de Visión , Niño , Humanos , Preescolar , Reproducibilidad de los Resultados , Agudeza Visual
5.
Doc Ophthalmol ; 148(2): 87-95, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38416305

RESUMEN

PURPOSE: The steady-state pattern electroretinogram (ssPERG) is used to assess retinal ganglion cell function in a variety of research contexts and diagnostic applications. In certain groups of patients or study participants, stable central fixation of the stimulus is not guaranteed. The present study aimed at assessing the effects of misfixation on the ssPERG response to checkerboard reversal stimuli. METHODS: Using two check sizes (0.8° and 15°), we compared ssPERG responses for several amounts of fixation deviation, ranging from 0° to 19° horizontally and from 0° to 14° diagonally. The stimulus area extended to 15° eccentricity, stimulus reversal rate was 15/s. RESULTS: Up to around 7° eccentricity, there was no sizable effect of fixation deviation under most conditions. Effects were somewhat larger for nasal than for temporal deviation, in particular for small checks. Diagonal deviation was associated with a response to luminance onset/offset at 7.5 Hz (subharmonic of the reversal rate), most prominently when the interior of a large check was fixated. CONCLUSION: Generally, moderate inaccuracies of fixation do not have a sizable effect on ssPERG amplitude. However, with large checks, the luminance response has to be considered.


Asunto(s)
Electrorretinografía , Reconocimiento Visual de Modelos , Humanos , Reconocimiento Visual de Modelos/fisiología , Células Ganglionares de la Retina/fisiología
6.
Invest Radiol ; 59(4): 298-305, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37747455

RESUMEN

OBJECTIVES: The aim of this study was to compare the detection rate of and reader confidence in 0.55 T knee magnetic resonance imaging (MRI) findings with 3 T knee MRI in patients with acute trauma and knee pain. MATERIALS AND METHODS: In this prospective study, 0.55 T and 3 T knee MRI of 25 symptomatic patients (11 women; median age, 38 years) with suspected internal derangement of the knee was obtained in 1 setting. On the 0.55 T system, a commercially available deep learning image reconstruction algorithm was used (Deep Resolve Gain and Deep Resolve Sharp; Siemens Healthineers), which was not available on the 3 T system. Two board-certified radiologists reviewed all images independently and graded image quality parameters, noted MRI findings and their respective reporting confidence level for the presence or absence, as well as graded the bone, cartilage, meniscus, ligament, and tendon lesions. Image quality and reader confidence levels were compared ( P < 0.05 = significant), and clinical findings were correlated between 0.55 T and 3 T MRI by calculation of the intraclass correlation coefficient (ICC). RESULTS: Image quality was rated higher at 3 T compared with 0.55 T studies (each P ≤ 0.017). Agreement between 0.55 T and 3 T MRI for the detection and grading of bone marrow edema and fractures, ligament and tendon lesions, high-grade meniscus and cartilage lesions, Baker cysts, and joint effusions was perfect for both readers. Overall identification and grading of cartilage and meniscal lesions showed good agreement between high- and low-field MRI (each ICC > 0.76), with lower agreement for low-grade cartilage (ICC = 0.77) and meniscus lesions (ICC = 0.49). There was no difference in readers' confidence levels for reporting lesions of bone, ligaments, tendons, Baker cysts, and joint effusions between 0.55 T and 3 T (each P > 0.157). Reader reporting confidence was higher for cartilage and meniscal lesions at 3 T (each P < 0.041). CONCLUSIONS: New-generation 0.55 T knee MRI, with deep learning-aided image reconstruction, allows for reliable detection and grading of joint lesions in symptomatic patients, but it showed limited accuracy and reader confidence for low-grade cartilage and meniscal lesions in comparison with 3 T MRI.


Asunto(s)
Traumatismos de la Rodilla , Quiste Poplíteo , Humanos , Femenino , Adulto , Estudios Prospectivos , Quiste Poplíteo/patología , Traumatismos de la Rodilla/diagnóstico por imagen , Traumatismos de la Rodilla/patología , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/patología , Imagen por Resonancia Magnética/métodos
7.
Radiol Artif Intell ; 5(5): e230024, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37795137

RESUMEN

Purpose: To present a deep learning segmentation model that can automatically and robustly segment all major anatomic structures on body CT images. Materials and Methods: In this retrospective study, 1204 CT examinations (from 2012, 2016, and 2020) were used to segment 104 anatomic structures (27 organs, 59 bones, 10 muscles, and eight vessels) relevant for use cases such as organ volumetry, disease characterization, and surgical or radiation therapy planning. The CT images were randomly sampled from routine clinical studies and thus represent a real-world dataset (different ages, abnormalities, scanners, body parts, sequences, and sites). The authors trained an nnU-Net segmentation algorithm on this dataset and calculated Dice similarity coefficients to evaluate the model's performance. The trained algorithm was applied to a second dataset of 4004 whole-body CT examinations to investigate age-dependent volume and attenuation changes. Results: The proposed model showed a high Dice score (0.943) on the test set, which included a wide range of clinical data with major abnormalities. The model significantly outperformed another publicly available segmentation model on a separate dataset (Dice score, 0.932 vs 0.871; P < .001). The aging study demonstrated significant correlations between age and volume and mean attenuation for a variety of organ groups (eg, age and aortic volume [rs = 0.64; P < .001]; age and mean attenuation of the autochthonous dorsal musculature [rs = -0.74; P < .001]). Conclusion: The developed model enables robust and accurate segmentation of 104 anatomic structures. The annotated dataset (https://doi.org/10.5281/zenodo.6802613) and toolkit (https://www.github.com/wasserth/TotalSegmentator) are publicly available.Keywords: CT, Segmentation, Neural Networks Supplemental material is available for this article. © RSNA, 2023See also commentary by Sebro and Mongan in this issue.

8.
Doc Ophthalmol ; 146(3): 199-210, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37269394

RESUMEN

This document developed by the International Society for Clinical Electrophysiology of Vision (ISCEV) provides guidance for calibration and verification of stimulus and recording systems specific to clinical electrophysiology of vision. This guideline provides additional information for those using ISCEV Standards and Extended protocols and supersedes earlier Guidelines. The ISCEV guidelines for calibration and verification of stimuli and recording instruments (2023 update) were approved by the ISCEV Board of Directors 01, March 2023.


Asunto(s)
Electrorretinografía , Visión Ocular , Electrorretinografía/métodos , Calibración
9.
Transl Vis Sci Technol ; 12(6): 20, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37358491

RESUMEN

Purpose: To quantify visual performance of patients with achromatopsia at various contrast and luminance combinations typical for daily living conditions, in comparison to controls, and to measure beneficial effects of short-wavelength cutoff filter glasses used by patients with achromatopsia to reduce glare sensation. Methods: Best-corrected visual acuity (BCVA) was tested with Landolt rings using an automated device (VA-CAL test). The visual acuity space was assessed for each participant with and without filter glasses (transmission >550 nm) at 46 contrast-luminance combinations (18%-95%; 0-10,000 cd/m2). The BCVA differences between both conditions were calculated for each combination as absolute values and relative to individual standard BCVA. Results: Fourteen achromats (mean ± SD: 37.9 ± 17.6 years) and 14 normally sighted controls (mean ± SD: 25.2 ± 2.8 years) were included in the study. Without filter glasses, achromats' BCVA was best at 30 cd/m2 (mean ± SEM: 0.76 ± 0.046 logarithm of the minimum angle of resolution [logMAR], contrast = 89%) and worst at 10,000 cd/m2 (mean ± SEM: 1.41 ± 0.08 logMAR, contrast = 18%), a deterioration up to 0.6 logMAR due to increased luminance and decreased contrast. Filter glasses improved achromats' BCVA for almost all luminances by about 0.2 logMAR but lowered controls' BCVA by about 0.1 logMAR. Conclusions: The VA-CAL test provides numerical proof that short-wavelength cutoff filter glasses can help patients with achromatopsia in everyday life, avoiding the common situation of severe visual impairment at certain daily object contrasts and ambient luminances. Translational Relevance: The VA-CAL test discovers losses of spatial resolution in the visual acuity space not seen in standardized BCVA assessment. Filter glasses improve the patients' daily visual performance, rendering them a strongly recommended visual aid in achromatopsia.


Asunto(s)
Defectos de la Visión Cromática , Humanos , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/terapia , Condiciones Sociales , Agudeza Visual , Trastornos de la Visión/diagnóstico
10.
Med Phys ; 50(9): 5682-5697, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36945890

RESUMEN

BACKGROUND: To test and validate novel CT techniques, such as texture analysis in radiomics, repeat measurements are required. Current anthropomorphic phantoms lack fine texture and true anatomic representation. 3D-printing of iodinated ink on paper is a promising phantom manufacturing technique. Previously acquired or artificially created CT data can be used to generate realistic phantoms. PURPOSE: To present the design process of an anthropomorphic 3D-printed iodine ink phantom, highlighting the different advantages and pitfalls in its use. To analyze the phantom's X-ray attenuation properties, and the influences of the printing process on the imaging characteristics, by comparing it to the original input dataset. METHODS: Two patient CT scans and artificially generated test patterns were combined in a single dataset for phantom printing and cropped to a size of 26 × 19 × 30 cm3 . This DICOM dataset was printed on paper using iodinated ink. The phantom was CT-scanned and compared to the original image dataset used for printing the phantom. The water-equivalent diameter of the phantom was compared to that of a patient cohort (N = 104). Iodine concentrations in the phantom were measured using dual-energy CT. 86 radiomics features were extracted from 10 repeat phantom scans and the input dataset. Features were compared using a histogram analysis and a PCA individually and overall, respectively. The frequency content was compared using the normalized spectrum modulus. RESULTS: Low density structures are depicted incorrectly, while soft tissue structures show excellent visual accordance with the input dataset. Maximum deviations of around 30 HU between the original dataset and phantom HU values were observed. The phantom has X-ray attenuation properties comparable to a lightweight adult patient (∼54 kg, BMI 19 kg/m2 ). Iodine concentrations in the phantom varied between 0 and 50 mg/ml. PCA of radiomics features shows different tissue types separate in similar areas of PCA representation in the phantom scans as in the input dataset. Individual feature analysis revealed systematic shift of first order radiomics features compared to the original dataset, while some higher order radiomics features did not. The normalized frequency modulus |f(ω)| of the phantom data agrees well with the original data. However, all frequencies systematically occur more frequently in the phantom compared to the maximum of the spectrum modulus than in the original data set, especially for mid-frequencies (e.g., for ω = 0.3942 mm-1 , |f(ω)|original  = 0.09 * |fmax |original and |f(ω)|phantom  = 0.12 * |fmax |phantom ). CONCLUSIONS: 3D-iodine-ink-printing technology can be used to print anthropomorphic phantoms with a water-equivalent diameter of a lightweight adult patient. Challenges include small residual air enclosures and the fidelity of HU values. For soft tissue, there is a good agreement between the HU values of the phantom and input data set. Radiomics texture features of the phantom scans are similar to the input data set, but systematic shifts of radiomics features in first order features, due to differences in HU values, need to be considered. The paper substrate influences the spatial frequency distribution of the phantom scans. This phantom type is of very limited use for dual-energy CT analyses.


Asunto(s)
Tinta , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Impresión Tridimensional
11.
J Clin Med ; 12(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769827

RESUMEN

PURPOSE: Accurate detection of cerebral microbleeds (CMBs) on susceptibility-weighted (SWI) magnetic resonance imaging (MRI) is crucial for the characterization of many neurological diseases. Low-field MRI offers greater access at lower costs and lower infrastructural requirements, but also reduced susceptibility artifacts. We therefore evaluated the diagnostic performance for the detection of CMBs of a whole-body low-field MRI in a prospective cohort of suspected stroke patients compared to an established 1.5 T MRI. METHODS: A prospective scanner comparison was performed including 27 patients, of whom 3 patients were excluded because the time interval was >1 h between acquisition of the 1.5 T and 0.55 T MRI. All SWI sequences were assessed for the presence, number, and localization of CMBs by two neuroradiologists and additionally underwent a Likert rating with respect to image impression, resolution, noise, contrast, and diagnostic quality. RESULTS: A total of 24 patients with a mean age of 74 years were included (11 female). Both readers detected the same number and localization of microbleeds in all 24 datasets (sensitivity and specificity 100%; interreader reliability Ï° = 1), with CMBs only being observed in 12 patients. Likert ratings of the sequences at both field strengths regarding overall image quality and diagnostic quality did not reveal significant differences between the 0.55 T and 1.5 T sequences (p = 0.942; p = 0.672). For resolution and contrast, the 0.55 T sequences were even significantly superior (p < 0.0001; p < 0.0003), whereas the 1.5 T sequences were significantly superior (p < 0.0001) regarding noise. CONCLUSION: Low-field MRI at 0.55 T may have similar accuracy as 1.5 T scanners for the detection of microbleeds and thus may have great potential as a resource-efficient alternative in the near future.

12.
Eur Radiol Exp ; 7(1): 5, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36750494

RESUMEN

BACKGROUND: To investigate hip implant-related metal artifacts on a 0.55-T system compared with 1.5-T and 3-T systems. METHODS: Total hip arthroplasty made of three different alloys were evaluated in a water phantom at 0.55, 1.5, and 3 T using routine protocols. Visually assessment (VA) was performed by three readers using a Likert scale from 0 (no artifacts) to 6 (extremely severe artifacts). Quantitative assessment (QA) was performed using the coefficient of variation (CoV) and the fraction of voxels within a threshold of the mean signal intensity compared to an automatically defined region of interest (FVwT). Agreement was evaluated using intra/inter-class correlation coefficient (ICC). RESULTS: Interreader agreement of VA was strong-to-moderate (ICC 0.74-0.82). At all field strengths (0.55-T/1.5-T/3-T), artifacts were assigned a lower score for titanium (Ti) alloys (2.44/2.9/2.7) than for stainless steel (Fe-Cr) (4.1/3.9/5.1) and cobalt-chromium (Co-Cr) alloys (4.1/4.1/5.2) (p < 0.001 for both). Artifacts were lower for 0.55-T and 1.5-T than for 3-T systems, for all implants (p ≤ 0.049). A strong VA-to-QA correlation was found (r = 0.81; p < 0.001); CoV was lower for Ti alloys than for Fe-Cr and Co-Cr alloys at all field strengths. The FVwT showed a negative correlation with VA (-0.68 < r < -0.84; p < 0.001). CONCLUSIONS: Artifact intensity was lowest for Ti alloys at 0.55 T. For other alloys, it was similar at 0.55 T and 1.5 T, higher at 3 T. Despite an inferior gradient system and a larger bore width, the 0.55-T system showed the same artifact intensity of the 1.5-T system.


Asunto(s)
Aleaciones , Metales , Titanio , Prótesis e Implantes , Imagen por Resonancia Magnética/métodos
13.
Acad Radiol ; 30(11): 2440-2446, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36841743

RESUMEN

RATIONALE AND OBJECTIVES: To assess the potential of 0.55T low-field MRI system in lumbar spine imaging with and without the use of additional advanced postprocessing techniques. MATERIALS AND METHODS: The lumbar spine of 14 volunteers (32.9 ± 3.6 years) was imaged both at 0.55T and 1.5T using sequences from clinical routine. On the 0.55T scanner system, additional sequences with simultaneous multi-slice acquisition and artificial intelligence-based postprocessing techniques were acquired. Image quality of all 28 examinations was assessed by three musculoskeletal radiologists with respect to signal/contrast, resolution, and assessability of the spinal canal and neuroforamina using a 5-point Likert scale (1 = non-diagnostic to 5 = perfect quality). Interrater agreement was evaluated with the Intraclass Correlation Coefficient and the Mann-Whitney U test (significance level: p < 0.05). RESULTS: Image quality at 0.55T was rated lower on the 5-point Likert scale compared to 1.5T regarding signal/contrast (mean: 4.16 ± 0.29 vs. 4.54 ± 0.29; p < 0.001), resolution (4.07 ± 0.31 vs. 4.49 ± 0.30; p < 0.001), assessability of the spinal canal (4.28 ± 0.13 vs. 4.73 ± 0.26; p < 0.001) and the neuroforamina (4.14 ± 0.28 vs. 4.70 ± 0.27; p < 0.001). Image quality for the AI-processed sagittal T1 TSE and T2 TSE at 0.55T was also rated slightly lower, but still good to perfect with a concomitant reduction in measurement time. Interrater agreement was good to excellent (range: 0.60-0.91). CONCLUSION: While lumbar spine image quality at 0.55T is perceived inferior to imaging at 1.5T by musculoskeletal radiologists, good overall examination quality was observed with high interrater agreement. Advanced postprocessing techniques may accelerate intrinsically longer acquisition times at 0.55T.

14.
J Clin Med ; 11(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36431182

RESUMEN

OBJECTIVES: The objectives of this study were to assess patient comfort when imaged on a newly introduced 0.55T low-field magnetic resonance (MR) scanner system with a wider bore opening compared to a conventional 1.5T MR scanner system. MATERIALS AND METHODS: In this prospective study, fifty patients (mean age: 66.2 ± 17.0 years, 22 females, 28 males) underwent subsequent magnetic resonance imaging (MRI) examinations with matched imaging protocols at 0.55T (MAGNETOM FreeMax, Siemens Healthineers; Erlangen, Germany) and 1.5T (MAGNETOM Avanto Fit, Siemens Healthineers; Erlangen, Germany) on the same day. MRI performed between 05/2021 and 07/2021 was included for analysis. The 0.55T MRI system had a bore opening of 80 cm, while the bore diameter of the 1.5T scanner system was 60 cm. Four patient groups were defined by imaged body regions: (1) cranial or cervical spine MRI using a head/neck coil (n = 27), (2) lumbar or thoracic spine MRI using only the in-table spine coils (n = 10), (3) hip MRI using a large flex coil (n = 8) and (4) upper- or lower-extremity MRI using small flex coils (n = 5). Following the MRI examinations, patients evaluated (1) sense of space, (2) noise level, (3) comfort, (4) coil comfort and (5) overall examination impression on a 5-point Likert-scale (range: 1= "much worse" to 5 = "much better") using a questionnaire. Maximum noise levels of all performed imaging studies were measured in decibels (dB) by a sound level meter placed in the bore center. RESULTS: Sense of space was perceived to be "better" or "much better" by 84% of patients for imaging examinations performed on the 0.55T MRI scanner system (mean score: 4.34 ± 0.75). Additionally, 84% of patients rated noise levels as "better" or "much better" when imaged on the low-field scanner system (mean score: 3.90 ± 0.61). Overall sensation during the imaging examination at 0.55T was rated as "better" or "much better" by 78% of patients (mean score: 3.96 ± 0.70). Quantitative assessment showed significantly reduced maximum noise levels for all 0.55T MRI studies, regardless of body region compared to 1.5T, i.e., brain MRI (83.8 ± 3.6 dB vs. 89.3 ± 5.4 dB; p = 0.04), spine MRI (83.7 ± 3.7 dB vs. 89.4 ± 2.6 dB; p = 0.004) and hip MRI (86.3 ± 5.0 dB vs. 89.1 ± 1.4 dB; p = 0.04). CONCLUSIONS: Patients perceived 0.55T new-generation low-field MRI to be more comfortable than conventional 1.5T MRI, given its larger bore opening and reduced noise levels during image acquisition. Therefore, new concepts regarding bore design and noise level reduction of MR scanner systems may help to reduce patient anxiety and improve well-being when undergoing MR imaging.

15.
Autism Res ; 15(11): 2026-2037, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36217563

RESUMEN

The electroretinogram (ERG) allows the investigation of retinal signaling pathways and has increasingly been applied in individuals with mental disorders in search for potential biomarkers of neurodevelopmental disorders. Preceding ERG examinations in individuals with autism spectrum disorders (ASD) showed inconsistent results, which might be due to the small number of participants, heterogeneity of the ASD population, differences in age ranges, and stimulation methods. The aim of this study was to investigate functional retinal responses in adults with ASD by means of the light-adapted (photopic) ERG. Light-adapted ERG measurements were obtained with the RETeval® system applying three different stimulation protocols. In the final analysis, the ERG parameters a-wave, b-wave, the photopic negative response (PhNR), the photopic hill parameters as well as additional amplitude ratios were compared between 32 adults with high-functioning ASD and 31 non-autistic controls. Both groups were matched with regard to sex and age. No significant functional retinal differences in amplitude or peak time of the a- or b-wave, PhNR, the photopic hill parameters or the ERG-amplitude ratios could be detected in individuals with ASD compared to non-autistic participants. The absence of electrophysiological functional retinal alterations in ASD, suggests that changes in visual perception, such as increased attention to detail or visual hypersensitivity in ASD, are not due to impairments at early levels of retinal signal processing.


Asunto(s)
Trastorno del Espectro Autista , Electrorretinografía , Adulto , Humanos , Electrorretinografía/métodos , Células Ganglionares de la Retina/fisiología , Estimulación Luminosa , Retina/fisiología
16.
Transl Psychiatry ; 12(1): 402, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151078

RESUMEN

Ophthalmological methods have increasingly raised the interest of neuropsychiatric specialists. While the integrity of the retinal cell functions can be evaluated with the electroretinogram (ERG), optical coherence tomography (OCT) allows a structural investigation of retinal layer thicknesses. Previous studies indicate possible functional and structural retinal alterations in patients with schizophrenia. Twenty-five patients with paranoid schizophrenia and 25 healthy controls (HC) matched for age, sex, and smoking status participated in this study. Both, ERG and OCT were applied to obtain further insights into functional and structural retinal alterations. A significantly reduced a-wave amplitude and thickness of the corresponding para- and perifoveal outer nuclear layer (ONL) was detected in patients with paranoid schizophrenia with a positive correlation between both measurement parameters. Amplitude and peak time of the photopic negative response (PhNR) and thickness of the parafoveal ganglion cell layer (GCL) were decreased in patients with schizophrenia compared to HC. Our results show both structural and functional retinal differences between patients with paranoid schizophrenia and HC. We therefore recommend the comprehensive assessment of the visual system of patients with schizophrenia, especially to further investigate the effect of antipsychotic medication, the duration of illness, or other factors such as inflammatory or neurodegenerative processes. Moreover, longitudinal studies are required to investigate whether the functional alterations precede the structural changes.


Asunto(s)
Antipsicóticos , Células Ganglionares de la Retina , Electrorretinografía/métodos , Humanos , Retina/diagnóstico por imagen , Células Ganglionares de la Retina/fisiología , Esquizofrenia Paranoide/diagnóstico por imagen
17.
Iperception ; 13(5): 20416695221124153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119713

RESUMEN

Visual patterns can evoke marked, even beautiful motion illusions even if they are static; eye movements in all likelihood serve as temporal modulators. This paper concentrates on Ouchi-type "relative" or "sliding" motion illusions. It outlines an eye-motion-evoked motion-blur hypothesis, which does not correctly predict the shift direction of maximal illusion. This failure led to a nearly new particularly simple stimulus: an arrangement of dashed lines that strongly evokes a relative motion illusion, the "orthogonal dotted lines sway." The latter is well explained by motion integration.

18.
Eur Radiol ; 32(12): 8617-8628, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35678860

RESUMEN

OBJECTIVES: In the Cancer Core Europe Consortium (CCE), standardized biomarkers are required for therapy monitoring oncologic multicenter clinical trials. Multiparametric functional MRI and particularly diffusion-weighted MRI offer evident advantages for noninvasive characterization of tumor viability compared to CT and RECIST. A quantification of the inter- and intraindividual variation occurring in this setting using different hardware is missing. In this study, the MRI protocol including DWI was standardized and the residual variability of measurement parameters quantified. METHODS: Phantom and volunteer measurements (single-shot T2w and DW-EPI) were performed at the seven CCE sites using the MR hardware produced by three different vendors. Repeated measurements were performed at the sites and across the sites including a traveling volunteer, comparing qualitative and quantitative ROI-based results including an explorative radiomics analysis. RESULTS: For DWI/ADC phantom measurements using a central post-processing algorithm, the maximum deviation could be decreased to 2%. However, there is no significant difference compared to a decentralized ADC value calculation at the respective MRI devices. In volunteers, the measurement variation in 2 repeated scans did not exceed 11% for ADC and is below 20% for single-shot T2w in systematic liver ROIs. The measurement variation between sites amounted to 20% for ADC and < 25% for single-shot T2w. Explorative radiomics classification experiments yield better results for ADC than for single-shot T2w. CONCLUSION: Harmonization of MR acquisition and post-processing parameters results in acceptable standard deviations for MR/DW imaging. MRI could be the tool in oncologic multicenter trials to overcome the limitations of RECIST-based response evaluation. KEY POINTS: • Harmonizing acquisition parameters and post-processing homogenization, standardized protocols result in acceptable standard deviations for multicenter MR-DWI studies. • Total measurement variation does not to exceed 11% for ADC in repeated measurements in repeated MR acquisitions, and below 20% for an identical volunteer travelling between sites. • Radiomic classification experiments were able to identify stable features allowing for reliable discrimination of different physiological tissue samples, even when using heterogeneous imaging data.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Neoplasias , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Neoplasias/diagnóstico por imagen , Europa (Continente) , Reproducibilidad de los Resultados
19.
J Clin Med ; 11(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35628923

RESUMEN

Objectives: Ischemic stroke is a leading cause of mortality and acquired disability worldwide and thus plays an enormous health-economic role. Imaging of choice is computed-tomographic (CT) or magnetic resonance imaging (MRI), especially diffusion-weighted (DW) sequences. However, MR imaging is associated with high costs and therefore has a limited availability leading to low-field-MRI techniques increasingly coming into focus. Thus, the aim of our study was to assess the potential of stroke imaging with low-field MRI. Material and Methods: A scanner comparison was performed including 27 patients (17 stroke cohort, 10 control group). For each patient, a brain scan was performed first with a 1.5T scanner and afterwards with a 0.55T scanner. Scan protocols were as identical as possible and optimized. Data analysis was performed in three steps: All DWI/ADC (apparent diffusion coefficient) and FLAIR (fluid attenuated inversion recovery) sequences underwent Likert rating with respect to image impression, resolution, noise, contrast, and diagnostic quality and were evaluated by two radiologists regarding number and localization of DWI and FLAIR lesions in a blinded fashion. Then segmentation of lesion volumes was performed by two other radiologists on DWI/ADC and FLAIR. Results: DWI/ADC lesions could be diagnosed with the same reliability by the most experienced reader in the 0.55T and 1.5T sequences (specificity 100% and sensitivity 92.9%, respectively). False positive findings did not occur. Detection of number/location of FLAIR lesions was mostly equivalent between 0.55T and 1.5T sequences. No significant difference (p = 0.789−0.104) for FLAIR resolution and contrast was observed regarding Likert scaling. For DWI/ADC noise, the 0.55T sequences were significantly superior (p < 0.026). Otherwise, the 1.5T sequences were significantly superior (p < 0.029). There was no significant difference in infarct volume and volume of infarct demarcation between the 0.55T and 1.5T sequences, when detectable. Conclusions: Low-field MRI stroke imaging at 0.55T may not be inferior to scanners with higher field strengths and thus has great potential as a low-cost alternative in future stroke diagnostics. However, there are limitations in the detection of very small infarcts. Further technical developments with follow-up studies must show whether this problem can be solved.

20.
Transl Vis Sci Technol ; 11(4): 12, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35420645

RESUMEN

Purpose: Best-corrected visual acuity (BCVA) is assessed at a single standardized luminance with maximum optotype contrast, not reflecting the constantly changing daily-life viewing conditions. For a more realistic estimation of visual performance at varying object contrasts (Cs) and ambient luminances (ALs), we developed a new VA test, VA-CAL. Methods: Landolt-C-rings between 18% and 95% Weber contrast, were presented at 1 m distance (8 Alternative Forced Choice) on a 5.7 degree field in the middle of a frosted glass screen (66 degrees), back-lit by 3060 LEDs (generating ambient luminances between 0-10,000 cd/m²). Visual acuity (VA) was measured in 14 normally sighted participants twice for 8 conditions of ambient luminance and 6 conditions of contrast using a QUEST staircase procedure. Results: VA improved continuously up to an ambient luminance of 3000 to 5000 cd/m² (best mean VA ± SEM: -0.47 ± 0.03 logMAR at C = 95%, AL = 3000 cd/m²), followed by a decline of VA at higher luminances with good test-retest variability. As expected, reduced contrast leads to a lower VA (worst mean VA ± SEM: -0.03 ± 0.03 logMAR at C = 18%, AL = 0 cd/m²). A 3D plot of these data shows the VA space (VAS) extending between the contrast and luminance axes, which describes the dynamics of VA continuously changing under varying everyday life conditions. Conclusions: VA-CAL, an automated device and procedure, allows for simultaneous evaluation of VA at various contrast-luminance combinations, thus providing a more comprehensive assessment of spatial vision problems not seen with standard BCVA tests. Translational Relevance: The new BCVA test VA-CAL incorporates a range of everyday contrast and ambient luminance conditions for a more realistic description of visual performance.


Asunto(s)
Pruebas de Visión , Visión Ocular , Humanos , Pruebas de Visión/métodos , Agudeza Visual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA