Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Glia ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38794866

RESUMEN

In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that Nf2 knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific Pak1 loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths in vivo. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.

2.
Stem Cell Reports ; 17(11): 2467-2483, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36351367

RESUMEN

The presence of putative stem/progenitor cells has been suggested in adult peripheral nervous system (PNS) tissue, including the dorsal root ganglion (DRG). To date, their identification and fate in pathophysiological conditions have not been addressed. Combining multiple in vitro and in vivo approaches, we identified the presence of stem cells in the adult DRG satellite glial population, and progenitors were present in the DRGs and sciatic nerve. Cell-specific transgenic mouse lines highlighted the proliferative potential of DRG stem cells and progenitors in vitro. DRG stem cells had gliogenic and neurogenic potentials, whereas progenitors were essentially gliogenic. Lineage tracing showed that, under physiological conditions, adult DRG stem cells maintained DRG homeostasis by supplying satellite glia. Under pathological conditions, adult DRG stem cells replaced DRG neurons lost to injury in addition of renewing the satellite glial pool. These novel findings open new avenues for development of therapeutic strategies targeting DRG stem cells for PNS disorders.


Asunto(s)
Células Madre Adultas , Ganglios Espinales , Ratones , Animales , Neuroglía , Neuronas , Células Madre
3.
Proc Natl Acad Sci U S A ; 119(10): e2115973119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35235463

RESUMEN

White matter disorders of the central nervous system (CNS), such as multiple sclerosis (MS), lead to failure of nerve conduction and long-lasting neurological disabilities affecting a variety of sensory and motor systems, including vision. While most disease-modifying therapies target the immune and inflammatory response, the promotion of remyelination has become a new therapeutic avenue to prevent neuronal degeneration and promote recovery. Most of these strategies have been developed in short-lived rodent models of demyelination, which spontaneously repair and do not reflect the size, organization, and biology of the human CNS. Thus, well-defined nonhuman primate models are required to efficiently advance therapeutic approaches for patients. Here, we followed the consequence of long-term toxin-induced demyelination of the macaque optic nerve on remyelination and axon preservation, as well as its impact on visual functions. Findings from oculomotor behavior, ophthalmic examination, electrophysiology, and retinal imaging indicate visual impairment involving the optic nerve and retina. These visual dysfunctions fully correlated at the anatomical level, with sustained optic nerve demyelination, axonal degeneration, and alterations of the inner retinal layers. This nonhuman primate model of chronic optic nerve demyelination associated with axonal degeneration and visual dysfunction, recapitulates several key features of MS lesions and should be instrumental in providing the missing link to translate emerging repair promyelinating/neuroprotective therapies to the clinic for myelin disorders, such as MS.


Asunto(s)
Axones , Nervio Óptico/patología , Remielinización , Retina/patología , Trastornos de la Visión/patología , Animales , Modelos Animales de Enfermedad , Potenciales Evocados Visuales , Macaca fascicularis , Masculino , Esclerosis Múltiple/patología , Reflejo Pupilar , Retina/diagnóstico por imagen , Retina/fisiopatología , Tomografía de Coherencia Óptica
4.
Artículo en Inglés | MEDLINE | ID: mdl-34642237

RESUMEN

BACKGROUND AND OBJECTIVES: To test whether low concentrations of teriflunomide (TF) could promote remyelination, we investigate the effect of TF on oligodendrocyte in culture and on remyelination in vivo in 2 demyelinating models. METHODS: The effect of TF on oligodendrocyte precursor cell (OPC) proliferation and differentiation was assessed in vitro in glial cultures derived from neonatal mice and confirmed on fluorescence-activated cell sorting-sorted adult OPCs. The levels of the 8,9-unsaturated sterols lanosterol and zymosterol were quantified in TF- and sham-treated cultures. In vivo, TF was administered orally, and remyelination was assessed both in myelin basic protein-GFP-nitroreductase (Mbp:GFP-NTR) transgenic Xenopus laevis demyelinated by metronidazole and in adult mice demyelinated by lysolecithin. RESULTS: In cultures, low concentrations of TF down to 10 nM decreased OPC proliferation and increased their differentiation, an effect that was also detected on adult OPCs. Oligodendrocyte differentiation induced by TF was abrogated by the oxidosqualene cyclase inhibitor Ro 48-8071 and was mediated by the accumulation of zymosterol. In the demyelinated tadpole, TF enhanced the regeneration of mature oligodendrocytes up to 2.5-fold. In the mouse demyelinated spinal cord, TF promoted the differentiation of newly generated oligodendrocytes by a factor of 1.7-fold and significantly increased remyelination. DISCUSSION: TF enhances zymosterol accumulation in oligodendrocytes and CNS myelin repair, a beneficial off-target effect that should be investigated in patients with multiple sclerosis.


Asunto(s)
Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Colesterol/metabolismo , Crotonatos/farmacología , Enfermedades Desmielinizantes/tratamiento farmacológico , Hidroxibutiratos/farmacología , Inmunosupresores/farmacología , Nitrilos/farmacología , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Remielinización/efectos de los fármacos , Toluidinas/farmacología , Animales , Animales Recién Nacidos , Células Cultivadas , Enfermedades del Sistema Nervioso Central/metabolismo , Crotonatos/administración & dosificación , Modelos Animales de Enfermedad , Hidroxibutiratos/administración & dosificación , Inmunosupresores/administración & dosificación , Larva , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nitrilos/administración & dosificación , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Toluidinas/administración & dosificación , Xenopus laevis
5.
Glia ; 69(8): 1916-1931, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33811384

RESUMEN

Common in vitro models used to study the mechanisms regulating myelination rely on co-cultures of oligodendrocyte precursor cells (OPCs) and neurons. In such models, myelination occurs in an environment that does not fully reflect cell-cell interactions and environmental cues present in vivo. To avoid these limitations while specifically manipulating oligodendroglial cells, we developed a reliable ex vivo model of myelination by seeding OPCs on cerebellar slices, deprived of their endogenous oligodendrocytes. We showed that exogenous OPCs seeded on unmyelinated cerebella, efficiently differentiate and form compact myelin. Spectral confocal reflectance microscopy and electron microscopy analysis revealed that the density of compacted myelin sheaths highly increases all along the culture. Importantly, we defined the appropriate culture time frame to study OPC differentiation and myelination, using accurate quantification resources we generated. Thus, this model is a powerful tool to study the cellular and molecular mechanisms of OPC differentiation and myelination. Moreover, it is suitable for the development and validation of new therapies for myelin-related disorders such as multiple sclerosis and psychiatric diseases.


Asunto(s)
Células Precursoras de Oligodendrocitos , Oligodendroglía , Diferenciación Celular/fisiología , Técnicas de Cocultivo , Vaina de Mielina/fisiología , Oligodendroglía/fisiología
6.
Acta Neuropathol ; 138(3): 457-476, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31011859

RESUMEN

Schwann cells (SC) enter the central nervous system (CNS) in pathophysiological conditions. However, how SC invade the CNS to remyelinate central axons remains undetermined. We studied SC migratory behavior ex vivo and in vivo after exogenous transplantation in the demyelinated spinal cord. The data highlight for the first time that SC migrate preferentially along blood vessels in perivascular extracellular matrix (ECM), avoiding CNS myelin. We demonstrate in vitro and in vivo that this migration route occurs by virtue of a dual mode of action of Eph/ephrin signaling. Indeed, EphrinB3, enriched in myelin, interacts with SC Eph receptors, to drive SC away from CNS myelin, and triggers their preferential adhesion to ECM components, such as fibronectin via integrinß1 interactions. This complex interplay enhances SC migration along the blood vessel network and together with lesion-induced vascular remodeling facilitates their timely invasion of the lesion site. These novel findings elucidate the mechanism by which SC invade and contribute to spinal cord repair.


Asunto(s)
Vasos Sanguíneos , Movimiento Celular/fisiología , Efrina-B3/metabolismo , Remielinización/fisiología , Células de Schwann/fisiología , Médula Espinal/metabolismo , Animales , Enfermedades Desmielinizantes/patología , Femenino , Fibronectinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal/fisiología , Médula Espinal/patología
7.
Glia ; 66(10): 2221-2232, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30152028

RESUMEN

Oligodendrocyte development is a critical process timely and spatially regulated to ensure proper myelination of the central nervous system. HMG-box transcription factors are key regulators of oligodendrocyte lineage progression. Among these factors, Sox17 was previously identified as a positive regulator of oligodendrocyte development. However, the role of Sox17 in oligodendroglial cell lineage progression and differentiation is still poorly understood. To define the functional role of Sox17, we generated new transgenic mouse models with inducible overexpression of Sox17, specifically in oligodendroglial cells. Here, we report that gain of Sox17 function has no effect on oligodendrocyte progenitor cells (OPCs) specification. During early postnatal development, Sox17 overexpression increases the pool of OPCs at the expense of differentiated oligodendrocytes. However, the oligodendroglial cell population, OPC proliferation and apoptosis remained unchanged in Sox17 transgenic mice. RNA sequencing, quantitative RT-PCR and immunohistochemical analysis showed that Sox17 represses the expression of the major myelin genes, resulting in a severe CNS hypomyelination. Overall, our data highlight an unexpected role for Sox17 as a negative regulator of OPC differentiation and myelination, suggesting stage specific functions for this factor during oligodendroglial cell lineage progression.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas HMGB/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Factores de Transcripción SOXF/metabolismo , Animales , Apoptosis/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Ratones Transgénicos , Células Precursoras de Oligodendrocitos/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Factores de Transcripción SOXF/genética , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Médula Espinal/patología , Transcriptoma
8.
J Neurosci ; 37(24): 5885-5899, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28522736

RESUMEN

Remyelination of CNS axons by Schwann cells (SCs) is not efficient, in part due to the poor migration of SCs into the adult CNS. Although it is known that migrating SCs avoid white matter tracts, the molecular mechanisms underlying this exclusion have never been elucidated. We now demonstrate that myelin-associated glycoprotein (MAG), a well known inhibitor of neurite outgrowth, inhibits rat SC migration and induces their death via γ-secretase-dependent regulated intramembrane proteolysis of the p75 neurotrophin receptor (also known as p75 cleavage). Blocking p75 cleavage using inhibitor X (Inh X), a compound that inhibits γ-secretase activity before exposing to MAG or CNS myelin improves SC migration and survival in vitro Furthermore, mouse SCs pretreated with Inh X migrate extensively in the demyelinated mouse spinal cord and remyelinate axons. These results suggest a novel role for MAG/myelin in poor SC-myelin interaction and identify p75 cleavage as a mechanism that can be therapeutically targeted to enhance SC-mediated axon remyelination in the adult CNS.SIGNIFICANCE STATEMENT Numerous studies have used Schwann cells, the myelin-making cells of the peripheral nervous system to remyelinate adult CNS axons. Indeed, these transplanted cells successfully remyelinate axons, but unfortunately they do not migrate far and so remyelinate only a few axons in the vicinity of the transplant site. It is believed that if Schwann cells could be induced to migrate further and survive better, they may represent a valid therapy for remyelination. We show that myelin-associated glycoprotein or CNS myelin, in general, inhibit rodent Schwann cell migration and induce their death via cleavage of the neurotrophin receptor p75. Blockade of p75 cleavage using a specific inhibitor significantly improves migration and survival of the transplanted Schwann cells in vivo.


Asunto(s)
Apoptosis/fisiología , Movimiento Celular/fisiología , Glicoproteína Asociada a Mielina/metabolismo , Proyección Neuronal/fisiología , Células de Schwann/citología , Células de Schwann/fisiología , Animales , Células Cultivadas , Femenino , Ratones , Ratones Desnudos , Vaina de Mielina/metabolismo
9.
Proc Natl Acad Sci U S A ; 114(11): E2243-E2252, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28246330

RESUMEN

Rapid and efficient protocols to generate oligodendrocytes (OL) from human induced pluripotent stem cells (iPSC) are currently lacking, but may be a key technology to understand the biology of myelin diseases and to develop treatments for such disorders. Here, we demonstrate that the induction of three transcription factors (SOX10, OLIG2, NKX6.2) in iPSC-derived neural progenitor cells is sufficient to rapidly generate O4+ OL with an efficiency of up to 70% in 28 d and a global gene-expression profile comparable to primary human OL. We further demonstrate that iPSC-derived OL disperse and myelinate the CNS of Mbpshi/shiRag-/- mice during development and after demyelination, are suitable for in vitro myelination assays, disease modeling, and screening of pharmacological compounds potentially promoting oligodendroglial differentiation. Thus, the strategy presented here to generate OL from iPSC may facilitate the studying of human myelin diseases and the development of high-throughput screening platforms for drug discovery.


Asunto(s)
Diferenciación Celular/genética , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Factores de Transcripción/genética , Animales , Biomarcadores , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Muerte Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Análisis por Conglomerados , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Expresión Génica Ectópica , Perfilación de la Expresión Génica , Humanos , Ratones , Mutación , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Estrés Oxidativo , Médula Espinal/metabolismo , Médula Espinal/patología , Médula Espinal/ultraestructura , Factores de Transcripción/metabolismo , Transcriptoma , Proteínas tau/genética , Proteínas tau/metabolismo
10.
Brain ; 140(4): 967-980, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334918

RESUMEN

One major challenge in multiple sclerosis is to understand the cellular and molecular mechanisms leading to disease severity progression. The recently demonstrated correlation between disease severity and remyelination emphasizes the importance of identifying factors leading to a favourable outcome. Why remyelination fails or succeeds in multiple sclerosis patients remains largely unknown, mainly because remyelination has never been studied within a humanized pathological context that would recapitulate major events in plaque formation such as infiltration of inflammatory cells. Therefore, we developed a new paradigm by grafting healthy donor or multiple sclerosis patient lymphocytes in the demyelinated lesion of nude mice spinal cord. We show that lymphocytes play a major role in remyelination whose efficacy is significantly decreased in mice grafted with multiple sclerosis lymphocytes compared to those grafted with healthy donors lymphocytes. Mechanistically, we demonstrated in vitro that lymphocyte-derived mediators influenced differentiation of oligodendrocyte precursor cells through a crosstalk with microglial cells. Among mice grafted with lymphocytes from different patients, we observed diverse remyelination patterns reproducing for the first time the heterogeneity observed in multiple sclerosis patients. Comparing lymphocyte secretory profile from patients exhibiting high and low remyelination ability, we identified novel molecules involved in oligodendrocyte precursor cell differentiation and validated CCL19 as a target to improve remyelination. Specifically, exogenous CCL19 abolished oligodendrocyte precursor cell differentiation observed in patients with high remyelination pattern. Multiple sclerosis lymphocytes exhibit intrinsic capacities to coordinate myelin repair and further investigation on patients with high remyelination capacities will provide new pro-regenerative strategies.


Asunto(s)
Inmunidad Adaptativa/fisiología , Enfermedades Desmielinizantes/inmunología , Vaina de Mielina/inmunología , Adolescente , Adulto , Anciano , Animales , Trasplante de Células , Quimiocina CCL19/inmunología , Femenino , Humanos , Linfocitos/inmunología , Lisofosfatidilcolinas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Persona de Mediana Edad , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Células-Madre Neurales/inmunología , Oligodendroglía/inmunología , Oligodendroglía/patología , Adulto Joven
11.
Neurobiol Dis ; 98: 137-148, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27940202

RESUMEN

Oligodendrocyte and myelin deficits have been reported in mental/psychiatric diseases. The p21-activated kinase 3 (PAK3), a serine/threonine kinase, whose activity is stimulated by the binding of active Rac and Cdc42 GTPases is affected in these pathologies. Indeed, many mutations of Pak3 gene have been described in non-syndromic intellectual disability diseases. Pak3 is expressed mainly in the brain where its role has been investigated in neurons but not in glial cells. Here, we showed that PAK3 is highly expressed in oligodendrocyte precursors (OPCs) and its expression decreases in mature oligodendrocytes. In the developing white matter of the Pak3 knockout mice, we found defects of oligodendrocyte differentiation in the corpus callosum and to a lesser extent in the anterior commissure, which were compensated at the adult stage. In vitro experiments in OPC cultures, derived from Pak3 knockout and wild type brains, support a developmental and cell-autonomous role for PAK3 in regulating OPC differentiation into mature oligodendrocytes. Moreover, we did not detect any obvious alterations of the proliferation or migration of Pak3 null OPCs compared to wild type. Overall, our data highlight PAK3 as a new regulator of OPC differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Células-Madre Neurales/metabolismo , Oligodendroglía/metabolismo , Quinasas p21 Activadas/metabolismo , Animales , Comisura Anterior Cerebral/citología , Comisura Anterior Cerebral/crecimiento & desarrollo , Comisura Anterior Cerebral/metabolismo , Movimiento Celular/fisiología , Células Cultivadas , Cuerpo Calloso/citología , Cuerpo Calloso/crecimiento & desarrollo , Cuerpo Calloso/metabolismo , Masculino , Ratones Noqueados , Células-Madre Neurales/citología , Oligodendroglía/citología , Sustancia Blanca/citología , Sustancia Blanca/crecimiento & desarrollo , Sustancia Blanca/metabolismo , Quinasas p21 Activadas/genética
12.
Stem Cells ; 34(4): 984-96, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26676415

RESUMEN

Pelizaeus-Merzbacher disease (PMD) results from an X-linked misexpression of proteolipid protein 1 (PLP1). This leukodystrophy causes severe hypomyelination with progressive inflammation, leading to neurological dysfunctions and shortened life expectancy. While no cure exists for PMD, experimental cell-based therapy in the dysmyelinated shiverer model suggested that human oligodendrocyte progenitor cells (hOPCs) or human neural precursor cells (hNPCs) are promising candidates to treat myelinopathies. However, the fate and restorative advantages of human NPCs/OPCs in a relevant model of PMD has not yet been addressed. Using a model of Plp1 overexpression, resulting in demyelination with progressive inflammation, we compared side-by-side the therapeutic benefits of intracerebrally grafted hNPCs and hOPCs. Our findings reveal equal integration of the donor cells within presumptive white matter tracks. While the onset of exogenous remyelination was earlier in hOPCs-grafted mice than in hNPC-grafted mice, extended lifespan occurred only in hNPCs-grafted animals. This improved survival was correlated with reduced neuroinflammation (microglial and astrocytosis loads) and microglia polarization toward M2-like phenotype followed by remyelination. Thus modulation of neuroinflammation combined with myelin restoration is crucial to prevent PMD pathology progression and ensure successful rescue of PMD mice. These findings should help to design novel therapeutic strategies combining immunomodulation and stem/progenitor cell-based therapy for disorders associating hypomyelination with inflammation as observed in PMD.


Asunto(s)
Inmunidad Innata , Inflamación/terapia , Células-Madre Neurales/trasplante , Oligodendroglía/trasplante , Enfermedad de Pelizaeus-Merzbacher/terapia , Animales , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/patología , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunomodulación , Inflamación/inmunología , Inflamación/patología , Ratones , Microglía/inmunología , Microglía/patología , Proteína Proteolipídica de la Mielina/biosíntesis , Vaina de Mielina/metabolismo , Células-Madre Neurales/inmunología , Oligodendroglía/inmunología , Enfermedad de Pelizaeus-Merzbacher/inmunología , Enfermedad de Pelizaeus-Merzbacher/patología , Regeneración
13.
J Clin Invest ; 125(9): 3642-56, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26301815

RESUMEN

Induced pluripotent stem cell-derived (iPS-derived) neural precursor cells may represent the ideal autologous cell source for cell-based therapy to promote remyelination and neuroprotection in myelin diseases. So far, the therapeutic potential of reprogrammed cells has been evaluated in neonatal demyelinating models. However, the repair efficacy and safety of these cells has not been well addressed in the demyelinated adult CNS, which has decreased cell plasticity and scarring. Moreover, it is not clear if these induced pluripotent-derived cells have the same reparative capacity as physiologically committed CNS-derived precursors. Here, we performed a side-by-side comparison of CNS-derived and skin-derived neural precursors in culture and following engraftment in murine models of adult spinal cord demyelination. Grafted induced neural precursors exhibited a high capacity for survival, safe integration, migration, and timely differentiation into mature bona fide oligodendrocytes. Moreover, grafted skin-derived neural precursors generated compact myelin around host axons and restored nodes of Ranvier and conduction velocity as efficiently as CNS-derived precursors while outcompeting endogenous cells. Together, these results provide important insights into the biology of reprogrammed cells in adult demyelinating conditions and support use of these cells for regenerative biomedicine of myelin diseases that affect the adult CNS.


Asunto(s)
Diferenciación Celular , Enfermedades Desmielinizantes/terapia , Vaina de Mielina/metabolismo , Células-Madre Neurales/metabolismo , Piel/metabolismo , Trasplante de Células Madre , Animales , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Ratones , Ratones Noqueados , Células-Madre Neurales/patología , Células-Madre Neurales/trasplante , Medicina Regenerativa/métodos , Piel/patología
14.
Stem Cells ; 33(6): 2011-24, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25786382

RESUMEN

It has been proposed that the adult dorsal root ganglia (DRG) harbor neural stem/progenitor cells (NPCs) derived from the neural crest. However, the thorough characterization of their stemness and differentiation plasticity was not addressed. In this study, we investigated adult DRG-NPC stem cell properties overtime, and their fate when ectopically grafted in the central nervous system. We compared them in vitro and in vivo to the well-characterized adult spinal cord-NPCs derived from the same donors. Using micro-dissection and neurosphere cultures, we demonstrate that adult DRG-NPCs have quasi unlimited self-expansion capacities without compromising their tissue specific molecular signature. Moreover, they differentiate into multiple peripheral lineages in vitro. After transplantation, adult DRG-NPCs generate pericytes in the developing forebrain but remyelinating Schwann cells in response to spinal cord demyelination. In addition, we show that axonal and endothelial/astrocytic factors as well astrocytes regulate the fate of adult DRG-NPCs in culture. Although the adult DRG-NPC multipotency is restricted to the neural crest lineage, their dual responsiveness to developmental and lesion cues highlights their impressive adaptive and repair potentials making them valuable targets for regenerative medicine.


Asunto(s)
Diferenciación Celular/fisiología , Enfermedades Desmielinizantes/patología , Ganglios Espinales/citología , Vaina de Mielina/metabolismo , Pericitos/citología , Células de Schwann/citología , Células Madre Adultas/citología , Animales , Células Cultivadas , Enfermedades Desmielinizantes/terapia , Ganglios Espinales/metabolismo , Ratones Endogámicos C57BL , Ratones Desnudos , Regeneración Nerviosa/fisiología , Cresta Neural/citología , Neuronas/citología
15.
Brain ; 138(Pt 1): 120-35, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25564492

RESUMEN

The basic helix-loop-helix transcription factor Olig2 is a key determinant for the specification of neural precursor cells into oligodendrocyte progenitor cells. However, the functional role of Olig2 in oligodendrocyte migration and differentiation remains elusive both during developmental myelination and under demyelinating conditions of the adult central nervous system. To decipher Olig2 functions, we generated transgenic mice (TetOlig2:Sox10(rtTA/+)) overexpressing Olig2 in Sox10(+) oligodendroglial cells in a doxycycline inducible manner. We show that Olig2 overexpression increases the generation of differentiated oligodendrocytes, leading to precocious myelination of the central nervous system. Unexpectedly, we found that gain of Olig2 function in oligodendrocyte progenitor cells enhances their migration rate. To determine whether Olig2 overexpression in adult oligodendrocyte progenitor cells promotes oligodendrocyte regeneration for myelin repair, we induced lysophosphatidylcholine demyelination in the corpus callosum of TetOlig2:Sox10(rtTA/+) and control mice. We found that Olig2 overexpression enhanced oligodendrocyte progenitor cell differentiation and remyelination. To assess the relevance of these findings in demyelinating diseases, we also examined OLIG2 expression in multiple sclerosis lesions. We demonstrate that OLIG2 displays a differential expression pattern in multiple sclerosis lesions that correlates with lesion activity. Strikingly, OLIG2 was predominantly detected in NOGO-A(+) (now known as RTN4-A) maturing oligodendrocytes, which prevailed in active lesion borders, rather than chronic silent and shadow plaques. Taken together, our data provide proof of principle indicating that OLIG2 overexpression in oligodendrocyte progenitor cells might be a possible therapeutic mechanism for enhancing myelin repair.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Enfermedades Desmielinizantes/metabolismo , Vaina de Mielina/fisiología , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/fisiología , Regeneración/genética , Médula Espinal/citología , Células Madre/fisiología , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Células Cultivadas , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Doxiciclina/farmacología , Embrión de Mamíferos , Regulación de la Expresión Génica/genética , Lisofosfatidilcolinas/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Esclerosis Múltiple/patología , Proteínas del Tejido Nervioso/genética , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía/patología , Oligodendroglía/ultraestructura , Regeneración/efectos de los fármacos , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Médula Espinal/patología
16.
PLoS One ; 7(9): e42667, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984406

RESUMEN

Schwann cell (SC) transplantation is currently being discussed as a strategy that may promote functional recovery in patients with multiple sclerosis (MS) and other inflammatory demyelinating diseases of the central nervous system (CNS). However this assumes they will not only survive but also remyelinate demyelinated axons in the chronically inflamed CNS. To address this question we investigated the fate of transplanted SCs in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) in the Dark Agouti rat; an animal model that reproduces the complex inflammatory demyelinating immunopathology of MS. We now report that SCs expressing green fluorescent protein (GFP-SCs) allografted after disease onset not only survive but also migrate to remyelinate lesions in the inflamed CNS. GFP-SCs were detected more frequently in the parenchyma after direct injection into the spinal cord, than via intra-thecal delivery into the cerebrospinal fluid. In both cases the transplanted cells intermingled with astrocytes in demyelinated lesions, aligned with axons and by twenty one days post transplantation had formed Pzero protein immunoreactive internodes. Strikingly, GFP-SCs transplantation was associated with marked decrease in clinical disease severity in terms of mortality; all GFP-SCs transplanted animals survived whilst 80% of controls died within 40 days of disease.


Asunto(s)
Movimiento Celular , Encefalomielitis Autoinmune Experimental/fisiopatología , Encefalomielitis Autoinmune Experimental/terapia , Vaina de Mielina/metabolismo , Recuperación de la Función , Células de Schwann/citología , Células de Schwann/trasplante , Animales , Astrocitos/metabolismo , Astrocitos/patología , Supervivencia Celular , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Inyecciones Espinales , Vaina de Mielina/patología , Glicoproteína Mielina-Oligodendrócito , Ratas , Médula Espinal/irrigación sanguínea , Médula Espinal/patología , Médula Espinal/fisiopatología , Transducción Genética
17.
Proc Natl Acad Sci U S A ; 108(26): 10714-9, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21670295

RESUMEN

Boundary cap cells (BC), which express the transcription factor Krox20, participate in the formation of the boundary between the central nervous system and the peripheral nervous system. To study BC stemness, we developed a method to purify and amplify BC in vitro from Krox20(Cre/+), R26R(YFP/+) mouse embryos. We show that BC progeny are EGF/FGF2-responsive, form spheres, and express neural crest markers. Upon growth factor withdrawal, BC progeny gave rise to multiple neural crest and CNS lineages. Transplanted into the developing murine forebrain, they successfully survived, migrated, and integrated within the host environment. Surprisingly, BC progeny generated exclusively CNS cells, including neurons, astrocytes, and myelin-forming oligodendrocytes. In vitro experiments indicated that a sequential combination of ventralizing morphogens and glial growth factors was necessary to reprogram BC into oligodendrocytes. Thus, BC progeny are endowed with differentiation plasticity beyond the peripheral nervous system. The demonstration that CNS developmental cues can reprogram neural crest-derived stem cells into CNS derivatives suggests that BC could serve as a source of cell type-specific lineages, including oligodendrocytes, for cell-based therapies to treat CNS disorders.


Asunto(s)
Diferenciación Celular , Sistema Nervioso Periférico/citología , Células Madre/citología , Animales , Linaje de la Célula , Movimiento Celular , Células Cultivadas , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Oligodendroglía/metabolismo
18.
Neuroscientist ; 13(4): 383-91, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17644768

RESUMEN

The loss of myelin, a major element involved in the saltatory conduction of the electrical impulse of the nervous system, is a major target of current research. Serious long-term disabilities are observed in patients with demyelinating disease of the central nervous system, such as multiple sclerosis. New therapeutic strategies aimed at overcoming myelin damage and axonal loss focus on the repair potential of myelin-forming cells. This review examines the use of peripheral myelin-forming cells, the Schwann cells, to promote myelin repair.


Asunto(s)
Sistema Nervioso Central/fisiología , Vaina de Mielina/metabolismo , Nervios Periféricos/fisiología , Regeneración/fisiología , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/historia , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/fisiopatología , Enfermedades Desmielinizantes/terapia , Modelos Animales de Enfermedad , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos
19.
Neurobiol Dis ; 26(2): 323-31, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17336078

RESUMEN

Loss of function of the myotubularin (MTM)-related protein 2 (MTMR2) in Schwann cells causes Charcot-Marie-Tooth disease type 4B1, a severe demyelinating neuropathy, but the consequences of MTMR2 disruption in Schwann cells are unknown. We established the expression profile of MTMR2 by real-time RT-PCR during rat myelination and showed it to be preferentially expressed at the onset of the myelination period. We developed a model in which MTMR2 loss of function was reproduced in primary cultures of Schwann cells by RNA interference. We found that depletion of MTMR2 in Schwann cells decreased their rate of proliferation. Furthermore, when cultivated in serum-free medium, MTMR2 depletion increased the number of Schwann cells that died by a caspase-dependent process. These results support the hypothesis that loss of MTMR2 in patients, by decreasing Schwann cells proliferation and survival, may impair the first stages of myelination of the peripheral nervous system.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Silenciador del Gen , Vaina de Mielina/genética , Nervios Periféricos/metabolismo , Proteínas Tirosina Fosfatasas/genética , Células de Schwann/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Proliferación Celular , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Medio de Cultivo Libre de Suero/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Nervios Periféricos/patología , Nervios Periféricos/fisiopatología , Proteínas Tirosina Fosfatasas no Receptoras , Interferencia de ARN , Ratas , Células de Schwann/patología
20.
Brain Pathol ; 15(3): 198-207, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16196386

RESUMEN

The mechanisms limiting myelin repair in human central nervous system (CNS) remain unknown. Models of induced-demyelination in the nonhuman primate CNS may provide the necessary grounds to unravel these mechanisms and to investigate the development of strategies to promote myelin repair. To address this issue, we developed a model of focal demyelination in the adult Macaca fascicularis CNS. Lesions were induced by microinjection of lysolecithin in the optic nerve and the profile of remyelination was compared to that of lysolecithin-induced lesions of the spinal cord. In both structures, the time-course of demyelination as well as the onset of remyelination were found to be similar to that in the rodent CNS. While spinal cord lesions were remyelinated within 6 weeks, optic nerve lesions remained demyelinated for up to 3 months post-injection. The failure of remyelination in the optic nerve correlated with a reduced density of NG2+ oligodendrocyte progenitor cells, the presence of oligodendrocytes that fail to ensheath naked axons in the lesion and the absence of astrocyte recruitment in the lesion compared with spinal cord lesions. Our present data suggest that the reduced oligodendrocyte progenitor population, the improper activation of oligodendrocytes at the onset of remyelination in the optic nerve, and possibly, the involvement of astrocytes contribute to the chronicity of the optic nerve lesion. This model of chronic demyelination in the macaque optic nerve stresses its pertinence to unraveling the mechanisms limiting remyelination in multiple sclerosis.


Asunto(s)
Enfermedades Desmielinizantes/patología , Vaina de Mielina/patología , Regeneración Nerviosa/fisiología , Enfermedades del Nervio Óptico/patología , Animales , Astrocitos/citología , Enfermedades Desmielinizantes/inducido químicamente , Modelos Animales de Enfermedad , Femenino , Inmunohistoquímica , Lisofosfatidilcolinas/toxicidad , Macaca fascicularis , Microscopía Electrónica de Transmisión , Esclerosis Múltiple/patología , Vaina de Mielina/ultraestructura , Oligodendroglía/citología , Oligodendroglía/ultraestructura , Enfermedades del Nervio Óptico/inducido químicamente , Enfermedades de la Médula Espinal/inducido químicamente , Enfermedades de la Médula Espinal/patología , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA