Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Curr Top Dev Biol ; 158: 1-14, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670701

RESUMEN

Embryonic skeletal muscle growth is contingent upon a population of somite derived satellite cells, however, the contribution of these cells to early postnatal skeletal muscle growth remains relatively high. As prepubertal postnatal development proceeds, the activity and contribution of satellite cells to skeletal muscle growth diminishes. Eventually, at around puberty, a population of satellite cells escapes terminal commitment, continues to express the paired box transcription factor Pax7, and reside in a quiescent state orbiting the myofiber periphery adjacent to the basal lamina. After adolescence, some satellite cell contributions to muscle maintenance and adaptation occur, however, their necessity is reduced relative to embryonic, early postnatal, and prepubertal growth.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético , Células Satélite del Músculo Esquelético , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/fisiología , Animales , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Humanos , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genética , Diferenciación Celular
2.
J Immunol ; 212(8): 1287-1306, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38426910

RESUMEN

Myocarditis has emerged as an immune-related adverse event of immune checkpoint inhibitor (ICI) cancer therapy associated with significant mortality. To ensure patients continue to safely benefit from life-saving cancer therapy, an understanding of fundamental immunological phenomena underlying ICI myocarditis is essential. We recently developed the NOD-cMHCI/II-/-.DQ8 mouse model that spontaneously develops myocarditis with lower mortality than observed in previous HLA-DQ8 NOD mouse strains. Our strain was rendered murine MHC class I and II deficient using CRISPR/Cas9 technology, making it a genetically clean platform for dissecting CD4+ T cell-mediated myocarditis in the absence of classically selected CD8+ T cells. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, anti-PD-1 administration accelerates skeletal muscle myositis. Using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses, we performed a thorough characterization of cardiac and skeletal muscle T cells, identifying shared and unique characteristics of both populations. Taken together, this report details a mouse model with features of a rare, but highly lethal clinical presentation of overlapping myocarditis and myositis following ICI therapy. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies.


Asunto(s)
Diabetes Mellitus Experimental , Antígenos HLA-DQ , Miocarditis , Miositis , Neoplasias , Humanos , Ratones , Animales , Ratones Endogámicos NOD , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Miositis/inducido químicamente , Miositis/patología
3.
Skelet Muscle ; 12(1): 8, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35414122

RESUMEN

BACKGROUND: Radiotherapy is commonly used to treat childhood cancers and can have adverse effects on muscle function, but the underlying mechanisms have yet to be fully elucidated. We hypothesized that endurance exercise following radiation treatment would improve skeletal muscle function. METHODS: We utilized the Small Animal Radiation Research Platform (SARRP) to irradiate juvenile male mice with a clinically relevant fractionated dose of 3× (every other day over 5 days) 8.2 Gy X-ray irradiation locally from the knee to footpad region of the right hindlimb. Mice were then singly housed for 1 month in cages equipped with either locked or free-spinning voluntary running wheels. Ex vivo muscle contractile function, RT-qPCR analyses, resting cytosolic and sarcoplasmic reticulum (SR) store Ca2+ levels, mitochondrial reactive oxygen species levels (MitoSOX), and immunohistochemical and biochemical analyses of muscle samples were conducted to assess the muscle pathology and the relative therapeutic impact of voluntary wheel running (VWR). RESULTS: Irradiation reduced fast-twitch extensor digitorum longus (EDL) muscle-specific force by 27% compared to that of non-irradiated mice, while VWR post-irradiation improved muscle-specific force by 37%. Radiation treatment similarly reduced slow-twitch soleus muscle-specific force by 14% compared to that of non-irradiated mice, while VWR post-irradiation improved specific force by 18%. We assessed intracellular Ca2+ regulation, oxidative stress, and mitochondrial homeostasis as potential mechanisms of radiation-induced pathology and exercise-mediated rescue. We found a significant reduction in resting cytosolic Ca2+ concentration following irradiation in sedentary mice. Intriguingly, however, SR Ca2+ store content was increased in myofibers from irradiated mice post-VWR compared to mice that remained sedentary. We observed a 73% elevation in the overall protein oxidization in muscle post-irradiation, while VWR reduced protein nitrosylation by 35% and mitochondrial reactive oxygen species (ROS) production by 50%. Finally, we found that VWR significantly increased the expression of PGC1α at both the transcript and protein levels, consistent with an exercise-dependent increase in mitochondrial biogenesis. CONCLUSIONS: Juvenile irradiation stunted muscle development, disrupted proper Ca2+ handling, damaged mitochondria, and increased oxidative and nitrosative stress, paralleling significant deficits in muscle force production. Exercise mitigated aberrant Ca2+ handling, mitochondrial homeostasis, and increased oxidative and nitrosative stress in a manner that correlated with improved skeletal muscle function after radiation.


Asunto(s)
Actividad Motora , Músculo Esquelético , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Actividad Motora/fisiología , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Retículo Sarcoplasmático/metabolismo
4.
J Cachexia Sarcopenia Muscle ; 13(1): 296-310, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34997696

RESUMEN

BACKGROUND: As paediatric cancer survivors are living into adulthood, they suffer from the age-related, accelerated decline of functional skeletal muscle tissue, termed sarcopenia. With ionizing radiation (radiotherapy) at the core of paediatric cancer therapies, its direct and indirect effects can have lifelong negative impacts on paediatric growth and maintenance of skeletal muscle. Utilizing our recently developed preclinical rhabdomyosarcoma mouse model, we investigated the late effects of paediatric radiation treatment on skeletal muscles from late adolescent (8 weeks old) and middle-aged (16 months old) mice. METHODS: Paediatric C57BL/6J male mice (3 weeks old) were injected with rhabdomyosarcoma cells into their right hindlimbs, and then fractionated irradiation (3 × 8.2 Gy) was administered to those limbs at 4 weeks old to eliminate the tumours. Radiation-alone and tumour-irradiated mice were assessed at either 8 weeks (3 weeks post-irradiation) or 16 months (14 months post-irradiation) of age for muscle physiology, myofibre characteristics, cell loss, histopathology, fibrosis, inflammatory gene expression, and fibrotic gene expression. RESULTS: Mice that received only paediatric radiation demonstrated reduced muscle mass (-17%, P < 0.001), muscle physiological function (-25%, P < 0.01), muscle contractile kinetics (-25%, P < 0.05), satellite cell number (-45%, P < 0.05), myofibre cross-sectional area (-30%, P < 0.0001), and myonuclear number (-17%, P < 0.001). Paediatric radiation increased inflammatory gene expression, increased fibrotic gene expression, and induced extracellular matrix protein deposition (fibrosis) with tumour elimination exacerbating some phenotypes. Paediatric tumour-eliminated mice demonstrated exacerbated deficits to function (-20%, P < 0.05) and myofibre size (-17%, P < 0.001) in some muscles as well as further increases to inflammatory and fibrotic gene expression. Examining the age-related effects of paediatric radiotherapy in middle-aged mice, we found persistent myofibre atrophy (-20%, P < 0.01), myonuclear loss (-18%, P < 0.001), up-regulated inflammatory and fibrotic signalling, and lifelong fibrosis. CONCLUSIONS: The results from this paediatric radiotherapy model are consistent and recapitulate the clinical and molecular features of accelerated sarcopenia, musculoskeletal frailty, and radiation-induced fibrosis experienced by paediatric cancer survivors. We believe that this preclinical mouse model is well poised for future mechanistic insights and therapeutic interventions that improve the quality of life for paediatric cancer survivors.


Asunto(s)
Neoplasias , Calidad de Vida , Adolescente , Adulto , Animales , Fibrosis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Neoplasias/patología
5.
FEBS J ; 289(10): 2710-2722, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33811430

RESUMEN

During development, resident stem cell populations contribute to the growth and maturation of tissue and organs. In skeletal muscle, muscle stem cells, or satellite cells (SCs), are responsible for the maturation of postnatal myofibers. However, the role SCs play in later stages of postnatal growth, and thus, when they enter a mature quiescent state is controversial. Here, we discuss the current literature regarding the role SCs play in all stages of postnatal growth, from birth to puberty onset to young adulthood. We additionally highlight the implications of SC loss or dysfunction during developmental stages, both in the context of experimental paradigms and disease settings.


Asunto(s)
Células Satélite del Músculo Esquelético , Diferenciación Celular , Desarrollo de Músculos , Músculo Esquelético , Regeneración/fisiología , Células Madre
6.
J Cachexia Sarcopenia Muscle ; 12(3): 731-745, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33960737

RESUMEN

BACKGROUND: Skeletal muscle wasting (SMW) in cancer patients is associated with increased morbidity, mortality, treatment intolerance and discontinuation, and poor quality of life. This is particularly true for patients with pancreatic ductal adenocarcinoma (PDAC), as over 85% experience SMW, which is responsible for ~30% of patient deaths. While the established paradigm to explain SMW posits that muscle catabolism from systemic inflammation and nutritional deficiencies, the cause of death, and the cellular and molecular mechanisms responsible remain to be elucidated. To address this, we investigated the relationship between tumour burden and survival in the KCKO murine PDAC model. METHODS: Female C57BL/6J mice 6-8 weeks of age underwent orthotopic injection with KCKO-luc tumour cells. Solid tumour was verified on Day 5, post-tumour inoculation. In vivo, longitudinal lean mass and tumour burden were assessed via dual-energy X-ray absorptiometry and IVIS imaging, respectively, and total body weight was assessed, weekly. Animals were sacrificed at a designated end point of 'failure to thrive'. After sacrifice, lower limb hind muscles were harvested for histology and RNA extraction. RESULTS: We found a strong correlation between primary tumour size and survival (r2  = 0.83, P < 0.0001). A significant decrease in lower limb lean mass was first detected at Day 38 post-implantation vs. no tumour controls (NTCs) (P < 0.0001). SMW was confirmed by histology, which demonstrated a 38%, 32.7%, and 39.9% decrease in fibre size of extensor digitorum longus, soleus, and tibialis anterior muscles, respectively, in PDAC mice vs. NTC (P < 0.002). Histology also revealed a 67.6% increase in haematopoietic cells within the muscle of PDAC mice when compared with NTC. Bulk RNAseq on muscles from PDAC mice vs. NTC revealed significant increases in c/ebpß/Δ, il-1, il-6, and tnf gene expression. Pathway analyses to identify potential upstream factors revealed increased adipogenic gene expression, including a four-fold increase in igfbp-3. Histomorphometry of Oil Red-O staining for fat content in tibialis anterior muscles demonstrated a 95.5% increase in positively stained fibres from PDAC mice vs. NTC. CONCLUSIONS: Together, these findings support a novel model of PDAC-associated SMW and mortality in which systemic inflammation leads to inflammatory cell infiltration into skeletal muscle with up-regulated myocellular lipids.


Asunto(s)
Caquexia , Neoplasias Pancreáticas , Animales , Caquexia/etiología , Modelos Animales de Enfermedad , Femenino , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético , Neoplasias Pancreáticas/complicaciones , Calidad de Vida
7.
iScience ; 23(11): 101760, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33241204

RESUMEN

During prepubertal development, muscle stem cells (satellite cells, SCs) actively contribute to myofiber growth. Because some SCs are active during this time, they may be particularly susceptible to damage. Using a Small Animal Radiation Research Platform (SARRP), we investigated the effects of local fractionated radiation treatment on prepubertal SCs. Immediately after this regimen, there was a reduction in SC number. Although surviving SCs had deficiencies in function, some myogenic potential remained. Indeed, some muscle regenerative capacity persisted immediately after irradiation. Lastly, we assessed the long-term consequences of radiation-induced SC loss during prepuberty. We observed a reduction of myofiber size and corresponding loss of nuclei in both fast- and slow-contracting muscles 14 months post-irradiation. Notably, prepubertal SC depletion mimicked these lifelong deficits. This work highlights the susceptibility of prepubertal SCs to radiation exposure. We also reveal the importance of prepubertal SC contribution to the lifelong maintenance of skeletal muscle.

8.
Sci Rep ; 10(1): 19501, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177579

RESUMEN

Pediatric cancer treatment often involves chemotherapy and radiation, where off-target effects can include skeletal muscle decline. The effect of such treatments on juvenile skeletal muscle growth has yet to be investigated. We employed a small animal irradiator to administer fractionated hindlimb irradiation to juvenile mice bearing implanted rhabdomyosarcoma (RMS) tumors. Hindlimb-targeted irradiation (3 × 8.2 Gy) of 4-week-old mice successfully eliminated RMS tumors implanted one week prior. After establishment of this preclinical model, a cohort of tumor-bearing mice were injected with the chemotherapeutic drug, vincristine, alone or in combination with fractionated irradiation (5 × 4.8 Gy). Single myofiber analysis of fast-contracting extensor digitorum longus (EDL) and slow-contracting soleus (SOL) muscles was conducted 3 weeks post-treatment. Although a reduction in myofiber size was apparent, EDL and SOL myonuclear number were differentially affected by juvenile irradiation and/or vincristine treatment. In contrast, a decrease in myonuclear domain (myofiber volume/myonucleus) was observed regardless of muscle or treatment. Thus, inhibition of myofiber hypertrophic growth is a consistent feature of pediatric cancer treatment.


Asunto(s)
Quimioradioterapia/efectos adversos , Fibras Musculares Esqueléticas/patología , Rabdomiosarcoma/terapia , Envejecimiento , Animales , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Fraccionamiento de la Dosis de Radiación , Miembro Posterior/efectos de los fármacos , Miembro Posterior/patología , Miembro Posterior/efectos de la radiación , Hipertrofia , Masculino , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de la radiación , Prueba de Desempeño de Rotación con Aceleración Constante , Trasplante Isogénico , Vincristina/farmacología
9.
Nat Commun ; 11(1): 4167, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32820177

RESUMEN

Muscle regeneration depends on a robust albeit transient inflammatory response. Persistent inflammation is a feature of age-related regenerative deficits, yet the underlying mechanisms are poorly understood. Here, we find inflammatory-related CC-chemokine-receptor 2 (Ccr2) expression in non-hematopoietic myogenic progenitors (MPs) during regeneration. After injury, the expression of Ccr2 in MPs corresponds to the levels of its ligands, the chemokines Ccl2, 7, and 8. We find stimulation of Ccr2-activity inhibits MP fusion and contribution to myofibers. This occurs in association with increases in MAPKp38δ/γ signaling, MyoD phosphorylation, and repression of the terminal myogenic commitment factor Myogenin. High levels of Ccr2-chemokines are a feature of regenerating aged muscle. Correspondingly, deletion of Ccr2 in MPs is necessary for proper fusion into regenerating aged muscle. Finally, opportune Ccr2 inhibition after injury enhances aged regeneration and functional recovery. These results demonstrate that inflammatory-induced activation of Ccr2 signaling in myogenic cells contributes to aged muscle regenerative decline.


Asunto(s)
Mediadores de Inflamación/metabolismo , Músculo Esquelético/fisiopatología , Receptores CCR2/metabolismo , Regeneración/fisiología , Transducción de Señal/fisiología , Factores de Edad , Animales , Trasplante de Células/métodos , Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Quimiocina CCL8/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Desarrollo de Músculos/genética , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Miogenina/genética , Miogenina/metabolismo , Receptores CCR2/genética , Regeneración/genética , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/trasplante , Transducción de Señal/genética , Heridas y Lesiones/genética , Heridas y Lesiones/fisiopatología , Heridas y Lesiones/terapia
10.
Development ; 145(20)2018 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-30305290

RESUMEN

The functional role of Pax7-expressing satellite cells (SCs) in postnatal skeletal muscle development beyond weaning remains obscure. Therefore, the relevance of SCs during prepubertal growth, a period after weaning but prior to the onset of puberty, has not been examined. Here, we have characterized mouse skeletal muscle growth during prepuberty and found significant increases in myofiber cross-sectional area that correlated with SC-derived myonuclear number. Remarkably, genome-wide RNA-sequencing analysis established that post-weaning juvenile and early adolescent skeletal muscle have markedly different gene expression signatures. These distinctions are consistent with extensive skeletal muscle maturation during this essential, albeit brief, developmental phase. Indelible labeling of SCs with Pax7CreERT2/+ ; Rosa26nTnG/+ mice demonstrated SC-derived myonuclear contribution during prepuberty, with a substantial reduction at puberty onset. Prepubertal depletion of SCs in Pax7CreERT2/+ ; Rosa26DTA/+ mice reduced myofiber size and myonuclear number, and caused force generation deficits to a similar extent in both fast and slow-contracting muscles. Collectively, these data demonstrate SC-derived myonuclear accretion as a cellular mechanism that contributes to prepubertal hypertrophic skeletal muscle growth.


Asunto(s)
Desarrollo de Músculos , Factor de Transcripción PAX7/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Maduración Sexual , Animales , Animales Recién Nacidos , Fenómenos Biomecánicos , Regulación del Desarrollo de la Expresión Génica , Hipertrofia , Ratones Endogámicos C57BL , Contracción Muscular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA