Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(17): e2213563120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068234

RESUMEN

Recent excavations of Late Antiquity settlements in the Negev Highlands of southern Israel uncovered a society that established commercial-scale viticulture in an arid environment [D. Fuks et al., Proc. Natl. Acad. Sci. U.S.A. 117, 19780-19791 (2020)]. We applied target-enriched genome-wide sequencing and radiocarbon dating to examine grapevine pips that were excavated at three of these sites. Our analyses revealed centuries long and continuous grape cultivation in the Southern Levant. The genetically diverse pips also provided clues to ancient cultivation strategies aimed at improving agricultural productivity and ensuring food security. Applying genomic prediction analysis, a pip dated to the eighth century CE was determined to likely be from a white grape, to date the oldest to be identified. In a kinship analysis, another pip was found to be descendant from a modern Greek cultivar and was thus linked with several popular historic wines that were once traded across the Byzantine Empire. These findings shed light on historical Byzantine trading networks and on the genetic contribution of Levantine varieties to the classic Aegean landscape.


Asunto(s)
Vitis , Vino , Historia Antigua , Vitis/genética , ADN Antiguo , Arqueología , Israel
2.
Science ; 379(6635): 892-901, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862793

RESUMEN

We elucidate grapevine evolution and domestication histories with 3525 cultivated and wild accessions worldwide. In the Pleistocene, harsh climate drove the separation of wild grape ecotypes caused by continuous habitat fragmentation. Then, domestication occurred concurrently about 11,000 years ago in Western Asia and the Caucasus to yield table and wine grapevines. The Western Asia domesticates dispersed into Europe with early farmers, introgressed with ancient wild western ecotypes, and subsequently diversified along human migration trails into muscat and unique western wine grape ancestries by the late Neolithic. Analyses of domestication traits also reveal new insights into selection for berry palatability, hermaphroditism, muscat flavor, and berry skin color. These data demonstrate the role of the grapevines in the early inception of agriculture across Eurasia.


Asunto(s)
Evolución Biológica , Domesticación , Vitis , Humanos , Agricultura , Asia Occidental , Ecotipo , Fenotipo , Vitis/genética , Aclimatación
3.
Ann Bot ; 130(2): 159-171, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35700109

RESUMEN

BACKGROUND AND AIMS: Condensed tannins, responsible for berry and wine astringency, may have been selected during grapevine domestication. This work examines the phylogenetic distribution of condensed tannins throughout the Vitaceae phylogenetic tree. METHODS: Green berries and mature leaves of representative true-to-type members of the Vitaceae were collected before 'véraison', freeze-dried and pulverized, and condensed tannins were measured following depolymerization by nucleophilic addition of 2-mercaptoethanol to the C4 of the flavan-3-ol units in an organic acidic medium. Reaction products were separated and quantified by ultrahigh pressure liquid chromatography/diode array detection/mass spectrometry. KEY RESULTS AND CONCLUSIONS: The original ability to incorporate epigallocatechin (EGC) into grapevine condensed tannins was lost independently in both the American and Eurasian/Asian branches of the Vitaceae, with exceptional cases of reversion to the ancestral EGC phenotype. This is particularly true in the genus Vitis, where we now find two radically distinct groups differing with respect to EGC content. While Vitis species from Asia are void of EGC, 50 % of the New World Vitis harbour EGC. Interestingly, the presence of EGC is tightly coupled with the degree of leaf margin serration. Noticeably, the rare Asian EGC-forming species are phylogenetically close to Vitis vinifera, the only remnant representative of Vitis in Eurasia. Both the wild ancestral V. vinifera subsp. sylvestris as well as the domesticated V. vinifera subsp. sativa can accumulate EGC and activate galloylation biosynthesis that compete for photoassimilates and reductive power.


Asunto(s)
Proantocianidinas , Vitaceae , Vitis , Catequina/análogos & derivados , Frutas , Filogenia , Hojas de la Planta , Proantocianidinas/análisis , Taninos/análisis , Vitis/genética
4.
G3 (Bethesda) ; 12(7)2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35485948

RESUMEN

To cope with the challenges facing agriculture, speeding-up breeding programs is a worthy endeavor, especially for perennial species such as grapevine, but requires understanding the genetic architecture of target traits. To go beyond the mapping of quantitative trait loci in bi-parental crosses, we exploited a diversity panel of 279 Vitis vinifera L. cultivars planted in 5 blocks in the vineyard. This panel was phenotyped over several years for 127 traits including yield components, organic acids, aroma precursors, polyphenols, and a water stress indicator. The panel was genotyped for 63k single nucleotide polymorphisms by combining an 18K microarray and genotyping-by-sequencing. The experimental design allowed to reliably assess the genotypic values for most traits. Marker densification via genotyping-by-sequencing markedly increased the proportion of genetic variance explained by single nucleotide polymorphisms, and 2 multi-single nucleotide polymorphism models identified quantitative trait loci not found by a single nucleotide polymorphism-by-single nucleotide polymorphism model. Overall, 489 reliable quantitative trait loci were detected for 41% more response variables than by a single nucleotide polymorphism-by-single nucleotide polymorphism model with microarray-only single nucleotide polymorphisms, many new ones compared with the results from bi-parental crosses. A prediction accuracy higher than 0.42 was obtained for 50% of the response variables. Our overall approach as well as quantitative trait locus and prediction results provide insights into the genetic architecture of target traits. New candidate genes and the application into breeding are discussed.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple
5.
Sci Rep ; 11(1): 21381, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725430

RESUMEN

The pip, as the most common grapevine archaeological remain, is extensively used to document past viticulture dynamics. This paper uses state of the art morphological analyses to analyse the largest reference collection of modern pips to date, representative of the present-day diversity of the domesticated grapevine from Western Eurasia. We tested for a costructure between the form of the modern pips and the: destination use (table/wine), geographical origins, and populational labels obtained through two molecular approaches. Significant structuring is demonstrated for each of these cofactors and for the first time it is possible to infer properties of varieties without going through the parallel with modern varieties. These results provide a unique tool that can be applied to archaeological pips in order to reconstruct the spatio-temporal dynamics of grape diversity on a large scale and to better understand viticulture history. The models obtained were then used to infer the affiliations with archaeobotanical remains recovered in Mas de Vignoles XIV (Nîmes, France). The results show a twofold shift between the Late Iron Age and the Middle Ages, from table to wine grape varieties and from eastern to western origins which correlates with previous palaeogenomic results.

6.
PLoS One ; 15(11): e0239863, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33156832

RESUMEN

The phenotypic changes that occurred during the domestication and diversification of grapevine are well known, particularly changes in seed morphology, but the functional causes and consequences behind these variations are poorly understood. Wild and domesticate grapes differ, among others, in the form of their pips: wild grapes produce roundish pips with short stalks and cultivated varieties have more elongated pips with longer stalks. Such variations of form are of first importance for archaeobotany since the pip form is, most often, the only remaining information in archaeological settings. This study aims to enlighten archaeobotanical record and grapevine pip development by better understanding how size and shape (co)variates between pip and berry in both wild and domesticated Vitis vinifera. The covariation of berry size, number of seeds per berry ("piposity"), pip size and pip shape were explored on 49 grapevine accessions sampled among Euro-Mediterranean traditional cultivars and wild grapevines. We show that for wild grapevine, the higher the piposity, the bigger the berry and the more elongated the pip. For both wild and domesticated grapevine, the longer is the pip, the more it has a "domesticated" shape. Consequences for archaeobotanical studies are tested and discussed, and these covariations allowed the inference of berry dimensions from archaeological pips from a Southern France Roman site. This systematic exploration sheds light on new aspects of pip-berry relationship, in both size and shape, on grapevine eco-evo-devo changes during domestication, and invites to explore further the functional ecology of grapevine pip and berry and notably the impact of cultivation practices and human selection on grapevine morphology.


Asunto(s)
Domesticación , Frutas/anatomía & histología , Semillas/anatomía & histología , Frutas/genética , Frutas/fisiología , Herencia Multifactorial , Fenotipo , Semillas/genética , Vitis/genética , Vitis/fisiología
7.
Genome Biol ; 21(1): 223, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32892750

RESUMEN

BACKGROUND: A key step in domestication of the grapevine was the transition from separate sexes (dioecy) in wild Vitis vinifera ssp. sylvestris (V. sylvestris) to hermaphroditism in cultivated Vitis vinifera ssp. sativa (V. vinifera). It is known that V. sylvestris has an XY system and V. vinifera a modified Y haplotype (Yh) and that the sex locus is small, but it has not previously been precisely characterized. RESULTS: We generate a high-quality de novo reference genome for V. sylvestris, onto which we map whole-genome re-sequencing data of a cross to locate the sex locus. Assembly of the full X, Y, and Yh haplotypes of V. sylvestris and V. vinifera sex locus and examining their gene content and expression profiles during flower development in wild and cultivated accessions show that truncation and deletion of tapetum and pollen development genes on the X haplotype likely causes male sterility, while the upregulation of a Y allele of a cytokinin regulator (APRT3) may cause female sterility. The downregulation of this cytokinin regulator in the Yh haplotype may be sufficient to trigger reversal to hermaphroditism. Molecular dating of X and Y haplotypes is consistent with the sex locus being as old as the Vitis genus, but the mechanism by which recombination was suppressed remains undetermined. CONCLUSIONS: We describe the genomic and evolutionary characterization of the sex locus of cultivated and wild grapevine, providing a coherent model of sex determination in the latter and for transition from dioecy to hermaphroditism during domestication.


Asunto(s)
Domesticación , Genoma de Planta , Procesos de Determinación del Sexo , Vitis/genética , Haplotipos , Infertilidad Vegetal/genética , Secuenciación Completa del Genoma
8.
Nat Plants ; 5(6): 595-603, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31182840

RESUMEN

The Eurasian grapevine (Vitis vinifera) has long been important for wine production as well as being a food source. Despite being clonally propagated, modern cultivars exhibit great morphological and genetic diversity, with thousands of varieties described in historic and contemporaneous records. Through historical accounts, some varieties can be traced to the Middle Ages, but the genetic relationships between ancient and modern vines remain unknown. We present target-enriched genome-wide sequencing data from 28 archaeological grape seeds dating to the Iron Age, Roman era and medieval period. When compared with domesticated and wild accessions, we found that the archaeological samples were closely related to western European cultivars used for winemaking today. We identified seeds with identical genetic signatures present at different Roman sites, as well as seeds sharing parent-offspring relationships with varieties grown today. Furthermore, we discovered that one seed dated to ~1100 CE was a genetic match to 'Savagnin Blanc', providing evidence for 900 years of uninterrupted vegetative propagation.


Asunto(s)
Productos Agrícolas/genética , Variación Genética , Vitis/genética , Arqueología , Productos Agrícolas/historia , Francia , Historia Antigua , Polimorfismo de Nucleótido Simple , Semillas/genética , Vino
9.
PLoS One ; 13(2): e0192540, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29420602

RESUMEN

Grapevine is a very important crop species that is mainly cultivated worldwide for fruits, wine and juice. Identification of the genetic bases of performance traits through association mapping studies requires a precise knowledge of the available diversity and how this diversity is structured and varies across the whole genome. An 18k SNP genotyping array was evaluated on a panel of Vitis vinifera cultivars and we obtained a data set with no missing values for a total of 10207 SNPs and 783 different genotypes. The average inter-SNP spacing was ~47 kbp, the mean minor allele frequency (MAF) was 0.23 and the genetic diversity in the sample was high (He = 0.32). Fourteen SNPs, chosen from those with the highest MAF values, were sufficient to identify each genotype in the sample. Parentage analysis revealed 118 full parentages and 490 parent-offspring duos, thus confirming the close pedigree relationships within the cultivated grapevine. Structure analyses also confirmed the main divisions due to an eastern-western gradient and human usage (table vs. wine). Using a multivariate approach, we refined the structure and identified a total of eight clusters. Both the genetic diversity (He, 0.26-0.32) and linkage disequilibrium (LD, 28.8-58.2 kbp) varied between clusters. Despite the short span LD, we also identified some non-recombining haplotype blocks that may complicate association mapping. Finally, we performed a genome-wide association study that confirmed previous works and also identified new regions for important performance traits such as acidity. Taken together, all the results contribute to a better knowledge of the genetics of the cultivated grapevine.


Asunto(s)
Genoma de Planta , Polimorfismo de Nucleótido Simple , Vitis/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento
10.
Proc Natl Acad Sci U S A ; 114(48): E10309-E10318, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29133421

RESUMEN

Chemical analyses of ancient organic compounds absorbed into the pottery fabrics from sites in Georgia in the South Caucasus region, dating to the early Neolithic period (ca. 6,000-5,000 BC), provide the earliest biomolecular archaeological evidence for grape wine and viniculture from the Near East, at ca. 6,000-5,800 BC. The chemical findings are corroborated by climatic and environmental reconstruction, together with archaeobotanical evidence, including grape pollen, starch, and epidermal remains associated with a jar of similar type and date. The very large-capacity jars, some of the earliest pottery made in the Near East, probably served as combination fermentation, aging, and serving vessels. They are the most numerous pottery type at many sites comprising the so-called "Shulaveri-Shomutepe Culture" of the Neolithic period, which extends into western Azerbaijan and northern Armenia. The discovery of early sixth millennium BC grape wine in this region is crucial to the later history of wine in Europe and the rest of the world.


Asunto(s)
Arqueología , Ácidos Dicarboxílicos/aislamiento & purificación , Vitis/química , Vino/análisis , Botánica/métodos , Fermentación , Georgia (República) , Historia Antigua , Humanos , Polen/química , Almidón/análisis
11.
PLoS Genet ; 13(5): e1006799, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28531201

RESUMEN

Base composition is highly variable among and within plant genomes, especially at third codon positions, ranging from GC-poor and homogeneous species to GC-rich and highly heterogeneous ones (particularly Monocots). Consequently, synonymous codon usage is biased in most species, even when base composition is relatively homogeneous. The causes of these variations are still under debate, with three main forces being possibly involved: mutational bias, selection and GC-biased gene conversion (gBGC). So far, both selection and gBGC have been detected in some species but how their relative strength varies among and within species remains unclear. Population genetics approaches allow to jointly estimating the intensity of selection, gBGC and mutational bias. We extended a recently developed method and applied it to a large population genomic dataset based on transcriptome sequencing of 11 angiosperm species spread across the phylogeny. We found that at synonymous positions, base composition is far from mutation-drift equilibrium in most genomes and that gBGC is a widespread and stronger process than selection. gBGC could strongly contribute to base composition variation among plant species, implying that it should be taken into account in plant genome analyses, especially for GC-rich ones.


Asunto(s)
Evolución Molecular , Genoma de Planta , Magnoliopsida/genética , Polimorfismo Genético , Secuencia Rica en GC , Conversión Génica , Selección Genética
12.
Mol Ecol Resour ; 17(3): 565-580, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27487989

RESUMEN

We produced a unique large data set of reference transcriptomes to obtain new knowledge about the evolution of plant genomes and crop domestication. For this purpose, we validated a RNA-Seq data assembly protocol to perform comparative population genomics. For the validation, we assessed and compared the quality of de novo Illumina short-read assemblies using data from two crops for which an annotated reference genome was available, namely grapevine and sorghum. We used the same protocol for the release of 26 new transcriptomes of crop plants and wild relatives, including still understudied crops such as yam, pearl millet and fonio. The species list has a wide taxonomic representation with the inclusion of 15 monocots and 11 eudicots. All contigs were annotated using BLAST, prot4EST and Blast2GO. A strong originality of the data set is that each crop is associated with close relative species, which will permit whole-genome comparative evolutionary studies between crops and their wild-related species. This large resource will thus serve research communities working on both crops and model organisms. All the data are available at http://arcad-bioinformatics.southgreen.fr/.


Asunto(s)
Productos Agrícolas/genética , Genoma de Planta , Metagenómica , Transcriptoma , Evolución Biológica , Mapeo Contig
13.
BMC Plant Biol ; 16: 74, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27005772

RESUMEN

BACKGROUND: As for many crops, new high-quality grapevine varieties requiring less pesticide and adapted to climate change are needed. In perennial species, breeding is a long process which can be speeded up by gaining knowledge about quantitative trait loci linked to agronomic traits variation. However, due to the long juvenile period of these species, establishing numerous highly recombinant populations for high resolution mapping is both costly and time-consuming. Genome wide association studies in germplasm panels is an alternative method of choice, since it allows identifying the main quantitative trait loci with high resolution by exploiting past recombination events between cultivars. Such studies require adequate panel design to represent most of the available genetic and phenotypic diversity. Assessing linkage disequilibrium extent and panel power is also needed to determine the marker density required for association studies. RESULTS: Starting from the largest grapevine collection worldwide maintained in Vassal (France), we designed a diversity panel of 279 cultivars with limited relatedness, reflecting the low structuration in three genetic pools resulting from different uses (table vs wine) and geographical origin (East vs West), and including the major founders of modern cultivars. With 20 simple sequence repeat markers and five quantitative traits, we showed that our panel adequately captured most of the genetic and phenotypic diversity existing within the entire Vassal collection. To assess linkage disequilibrium extent and panel power, we genotyped single nucleotide polymorphisms: 372 over four genomic regions and 129 distributed over the whole genome. Linkage disequilibrium, measured by correlation corrected for kinship, reached 0.2 for a physical distance between 9 and 458 Kb depending on genetic pool and genomic region, with varying size of linkage disequilibrium blocks. This panel achieved reasonable power to detect associations between traits with high broad-sense heritability (> 0.7) and causal loci with intermediate allelic frequency and strong effect (explaining > 10 % of total variance). CONCLUSIONS: Our association panel constitutes a new, highly valuable resource for genetic association studies in grapevine, and deserves dissemination to diverse field and greenhouse trials to gain more insight into the genetic control of many agronomic traits and their interaction with the environment.


Asunto(s)
Variación Genética , Estudio de Asociación del Genoma Completo/métodos , Vitis/genética , Genes de Plantas , Marcadores Genéticos , Genotipo , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Especificidad de la Especie
14.
Hereditas ; 151(4-5): 73-80, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25363274

RESUMEN

Wild grapevine genetic diversity in southeast Turkey has not been documented to date. In the present work, in order to clarify the relationships between wild and cultivated grape accessions from southeastern Turkey, 22 nuclear and three chloroplast microsatellite loci were used on 21 wild grapevine Vitis vinifera L. ssp. sylvestris (Gmelin) and 13 cultivated grapevine Vitis vinifera ssp. sativa accessions. The number of alleles per SSR locus ranged from 4 (VVIn16) to 20 (VVIv67) and the mean allele number per locus was 10.09. Expected locus heterozygosity ranged from 0.586 (locus VVIb01) to 0.898 (locus (VVIv67)). The three cpSSR molecular markers presented variation in size both in cultivars and in wild Turkish accessions. Two size variants were detected for cpSSR3 (106 and 107 bp) for cpSSR5 (104 and 105 bp), and for cpSSR10 (115 and 116 bp). The six alleles in wild grapevines fell into three haplotypes B, C and D. A genetic structure according to accessions taxonomic status (wild or cultivated) was revealed by UPGMA analysis. This highlighted a clear separation between domesticated and wild accessions in Turkish germplasm. The results pointed out the need to further collect and characterize this wild and cultivated grapevine germplasm.


Asunto(s)
Variación Genética , Vitis/genética , Alelos , Cruzamiento , ADN de Cloroplastos/genética , Frecuencia de los Genes , Marcadores Genéticos , Genotipo , Haplotipos , Heterocigoto , Repeticiones de Microsatélite , Turquía
15.
BMC Plant Biol ; 14: 229, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25179565

RESUMEN

BACKGROUND: In Vitis vinifera L., domestication induced a dramatic change in flower morphology: the wild sylvestris subspecies is dioecious while hermaphroditism is largely predominant in the domesticated subsp. V. v. vinifera. The characterisation of polymorphisms in genes underlying the sex-determining chromosomal region may help clarify the history of domestication in grapevine and the evolution of sex chromosomes in plants. In the genus Vitis, sex determination is putatively controlled by one major locus with three alleles, male M, hermaphrodite H and female F, with an allelic dominance M > H > F. Previous genetic studies located the sex locus on chromosome 2. We used DNA polymorphisms of geographically diverse V. vinifera genotypes to confirm the position of this locus, to characterise the genetic diversity and traces of selection in candidate genes, and to explore the origin of hermaphroditism. RESULTS: In V. v. sylvestris, a sex-determining region of 154.8 kb, also present in other Vitis species, spans less than 1% of chromosome 2. It displays haplotype diversity, linkage disequilibrium and differentiation that typically correspond to a small XY sex-determining region with XY males and XX females. In male alleles, traces of purifying selection were found for a trehalose phosphatase, an exostosin and a WRKY transcription factor, with strikingly low polymorphism levels between distant geographic regions. Both diversity and network analysis revealed that H alleles are more closely related to M than to F alleles. CONCLUSIONS: Hermaphrodite alleles appear to derive from male alleles of wild grapevines, with successive recombination events allowing import of diversity from the X into the Y chromosomal region and slowing down the expansion of the region into a full heteromorphic chromosome. Our data are consistent with multiple domestication events and show traces of introgression from other Asian Vitis species into the cultivated grapevine gene pool.


Asunto(s)
Cromosomas de las Plantas , Organismos Hermafroditas/genética , Selección Genética , Procesos de Determinación del Sexo , Vitis/genética , Alelos , Productos Agrícolas/genética , Haplotipos , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo Genético
16.
BMC Plant Biol ; 13: 217, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24350702

RESUMEN

BACKGROUND: In grapevine, as in other fruit crops, fruit size and seed content are key components of yield and quality; however, very few Quantitative Trait Loci (QTLs) for berry weight and seed content (number, weight, and dry matter percentage) have been discovered so far. To identify new stable QTLs for marker-assisted selection and candidate gene identification, we performed simultaneous QTL detection in four mapping populations (seeded or seedless) with various genetic backgrounds. RESULTS: For berry weight, we identified five new QTLs, on linkage groups (LGs) 1, 8, 11, 17 and 18, in addition to the known major QTL on LG 18. The QTL with the largest effect explained up to 31% of total variance and was found in two genetically distant populations on LG 17, where it colocalized with a published putative domestication locus. For seed traits, besides the major QTLs on LG 18 previously reported, we found four new QTLs explaining up to 51% of total variance, on LGs 4, 5, 12 and 14. The previously published QTL for seed number on LG 2 was found related in fact to sex. We found colocalizations between seed and berry weight QTLs only for the major QTL on LG 18 in a seedless background, and on LGs 1 and 13 in a seeded background. Candidate genes belonging to the cell number regulator CNR or cytochrome P450 families were found under the berry weight QTLs on LGs 1, 8, and 17. The involvement of these gene families in fruit weight was first described in tomato using a QTL-cloning approach. Several other interesting candidate genes related to cell wall modifications, water import, auxin and ethylene signalling, transcription control, or organ identity were also found under berry weight QTLs. CONCLUSION: We discovered a total of nine new QTLs for berry weight or seed traits in grapevine, thereby increasing more than twofold the number of reliable QTLs for these traits available for marker assisted selection or candidate gene studies. The lack of colocalization between berry and seed QTLs suggests that these traits may be partly dissociated.


Asunto(s)
Frutas/crecimiento & desarrollo , Frutas/genética , Sitios de Carácter Cuantitativo/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Vitis/crecimiento & desarrollo , Vitis/genética , Mapeo Cromosómico , Estudios de Asociación Genética , Patrón de Herencia/genética , Escala de Lod , Tamaño de los Órganos/genética , Fenotipo , Carácter Cuantitativo Heredable
17.
BMC Plant Biol ; 13: 25, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23394135

RESUMEN

BACKGROUND: Grapevine (Vitis vinifera subsp. vinifera) is one of the most important and ancient horticultural plants in the world. Domesticated about 8-10,000 years ago in the Eurasian region, grapevine evolved from its wild relative (V. vinifera subsp. sylvestris) into very diverse and heterozygous cultivated forms. In this work we study grapevine genetic structure in a large sample of cultivated varieties, to interpret the wide diversity at morphological and molecular levels and link it to cultivars utilization, putative geographic origin and historical events. RESULTS: We analyzed the genetic structure of cultivated grapevine using a dataset of 2,096 multi-locus genotypes defined by 20 microsatellite markers. We used the Bayesian approach implemented in the STRUCTURE program and a hierarchical clustering procedure based on Ward's method to assign individuals to sub-groups. The analysis revealed three main genetic groups defined by human use and geographic origin: a) wine cultivars from western regions, b) wine cultivars from the Balkans and East Europe, and c) a group mainly composed of table grape cultivars from Eastern Mediterranean, Caucasus, Middle and Far East countries. A second structure level revealed two additional groups, a geographic group from the Iberian Peninsula and Maghreb, and a group comprising table grapes of recent origins from Italy and Central Europe. A large number of admixed genotypes were also identified. Structure clusters regrouped together a large proportion of family-related genotypes. In addition, Ward's method revealed a third level of structure, corresponding either to limited geographic areas, to particular grape use or to family groups created through artificial selection and breeding. CONCLUSIONS: This study provides evidence that the cultivated compartment of Vitis vinifera L. is genetically structured. Genetic relatedness of cultivars has been shaped mostly by human uses, in combination with a geographical effect. The finding of a large portion of admixed genotypes may be the trace of both large human-mediated exchanges between grape-growing regions throughout history and recent breeding.


Asunto(s)
Geografía , Vitis/genética , Variación Genética , Genética de Población , Genotipo , Humanos
18.
BMC Bioinformatics ; 12: 134, 2011 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21545712

RESUMEN

BACKGROUND: High-throughput re-sequencing, new genotyping technologies and the availability of reference genomes allow the extensive characterization of Single Nucleotide Polymorphisms (SNPs) and insertion/deletion events (indels) in many plant species. The rapidly increasing amount of re-sequencing and genotyping data generated by large-scale genetic diversity projects requires the development of integrated bioinformatics tools able to efficiently manage, analyze, and combine these genetic data with genome structure and external data. RESULTS: In this context, we developed SNiPlay, a flexible, user-friendly and integrative web-based tool dedicated to polymorphism discovery and analysis. It integrates:1) a pipeline, freely accessible through the internet, combining existing softwares with new tools to detect SNPs and to compute different types of statistical indices and graphical layouts for SNP data. From standard sequence alignments, genotyping data or Sanger sequencing traces given as input, SNiPlay detects SNPs and indels events and outputs submission files for the design of Illumina's SNP chips. Subsequently, it sends sequences and genotyping data into a series of modules in charge of various processes: physical mapping to a reference genome, annotation (genomic position, intron/exon location, synonymous/non-synonymous substitutions), SNP frequency determination in user-defined groups, haplotype reconstruction and network, linkage disequilibrium evaluation, and diversity analysis (Pi, Watterson's Theta, Tajima's D).Furthermore, the pipeline allows the use of external data (such as phenotype, geographic origin, taxa, stratification) to define groups and compare statistical indices.2) a database storing polymorphisms, genotyping data and grapevine sequences released by public and private projects. It allows the user to retrieve SNPs using various filters (such as genomic position, missing data, polymorphism type, allele frequency), to compare SNP patterns between populations, and to export genotyping data or sequences in various formats. CONCLUSIONS: Our experiments on grapevine genetic projects showed that SNiPlay allows geneticists to rapidly obtain advanced results in several key research areas of plant genetic diversity. Both the management and treatment of large amounts of SNP data are rendered considerably easier for end-users through automation and integration. Current developments are taking into account new advances in high-throughput technologies.SNiPlay is available at: http://sniplay.cirad.fr/.


Asunto(s)
Biología Computacional/métodos , Polimorfismo de Nucleótido Simple , Vitis/genética , Secuencia de Bases , Mapeo Cromosómico , Mutación INDEL , Internet , Filogenia , Alineación de Secuencia , Programas Informáticos
19.
BMC Plant Biol ; 10: 284, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21176183

RESUMEN

BACKGROUND: Unlike in tomato, little is known about the genetic and molecular control of fleshy fruit development of perennial fruit trees like grapevine (Vitis vinifera L.). Here we present the study of the sequence polymorphism in a 1 Mb grapevine genome region at the top of chromosome 18 carrying the fleshless berry mutation (flb) in order, first to identify SNP markers closely linked to the gene and second to search for possible signatures of domestication. RESULTS: In total, 62 regions (17 SSR, 3 SNP, 1 CAPS and 41 re-sequenced gene fragments) were scanned for polymorphism along a 3.4 Mb interval (85,127-3,506,060 bp) at the top of the chromosome 18, in both V. vinifera cv. Chardonnay and a genotype carrying the flb mutation, V. vinifera cv. Ugni Blanc mutant. A nearly complete homozygosity in Ugni Blanc (wild and mutant forms) and an expected high level of heterozygosity in Chardonnay were revealed. Experiments using qPCR and BAC FISH confirmed the observed homozygosity. Under the assumption that flb could be one of the genes involved into the domestication syndrome of grapevine, we sequenced 69 gene fragments, spread over the flb region, representing 48,874 bp in a highly diverse set of cultivated and wild V. vinifera genotypes, to identify possible signatures of domestication in the cultivated V. vinifera compartment. We identified eight gene fragments presenting a significant deviation from neutrality of the Tajima's D parameter in the cultivated pool. One of these also showed higher nucleotide diversity in the wild compartments than in the cultivated compartments. In addition, SNPs significantly associated to berry weight variation were identified in the flb region. CONCLUSIONS: We observed the occurrence of a large homozygous region in a non-repetitive region of the grapevine otherwise highly-heterozygous genome and propose a hypothesis for its formation. We demonstrated the feasibility to apply BAC FISH on the very small grapevine chromosomes and provided a specific probe for the identification of chromosome 18 on a cytogenetic map. We evidenced genes showing putative signatures of selection and SNPs significantly associated with berry weight variation in the flb region. In addition, we provided to the community 554 SNPs at the top of chromosome 18 for the development of a genotyping chip for future fine mapping of the flb gene in a F2 population when available.


Asunto(s)
Cromosomas de las Plantas/genética , Mutación , Polimorfismo Genético , Vitis/genética , Mapeo Cromosómico , Sitios Genéticos/genética , Variación Genética , Genotipo , Hibridación Fluorescente in Situ , Desequilibrio de Ligamiento , Repeticiones de Microsatélite/genética , Polimorfismo de Nucleótido Simple , Especificidad de la Especie , Sintenía , Vitis/clasificación
20.
Ann Bot ; 105(3): 443-55, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20034966

RESUMEN

BACKGROUND AND AIMS: In spite of the abundance of archaeological, bio-archaeological, historical and genetic data, the origins, historical biogeography, identity of ancient grapevine cultivars and mechanisms of domestication are still largely unknown. Here, analysis of variation in seed morphology aims to provide accurate criteria for the discrimination between wild grapes and modern cultivars and to understand changes in functional traits in relation to the domestication process. This approach is also used to quantify the phenotypic diversity in the wild and cultivated compartments and to provide a starting point for comparing well-preserved archaeological material, in order to elucidate the history of grapevine varieties. METHODS: Geometrical analysis (elliptic Fourier transform method) was applied to grapevine seed outlines from modern wild individuals, cultivars and well-preserved archaeological material from southern France, dating back to the first to second centuries. KEY RESULTS AND CONCLUSIONS: Significant relationships between seed shape and taxonomic status, geographical origin (country or region) of accessions and parentage of varieties are highlighted, as previously noted based on genetic approaches. The combination of the analysis of modern reference material and well-preserved archaeological seeds provides original data about the history of ancient cultivated forms, some of them morphologically close to the current 'Clairette' and 'Mondeuse blanche' cultivars. Archaeobiological records seem to confirm the complexity of human contact, exchanges and migrations which spread grapevine cultivation in Europe and in Mediterranean areas, and argue in favour of the existence of local domestication in the Languedoc (southern France) region during Antiquity.


Asunto(s)
Evolución Biológica , Semillas/fisiología , Vitis/fisiología , Europa (Continente) , Análisis de Fourier , Vitis/embriología , Vitis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...