Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mycobiology ; 51(4): 264-272, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711982

RESUMEN

Onion (Allium cepa L.) is an economically important vegetable crop worldwide. However, various fungal diseases, including Fusarium basal rot (FBR), neck rot, and white rot, reduce onion production or bulb storage life. FBR caused by Fusarium species is among the most destructive onion diseases. In this study, we identified Fusarium species associated with FBR in Jeolla and Gyeongsang Provinces in South Korea and evaluated fungicides against the pathogens. Our morphological and molecular analyses showed that FBR in onions is associated with Fusarium commune, Fusarium oxysporum, and Fusarium proliferatum. We selected seven fungicides (fludioxonil, hexaconazole, mandestrobin, penthiopyrad, prochloraz-manganese, pydiflumetofen, and tebuconazole) and evaluated their inhibitory effects on mycelial growth of the pathogens at three different concentrations (0.01, 0.1, and 1 mg/mL). We found that prochloraz-manganese was highly effective, inhibiting 100% of the mycelial growth of the pathogens at all concentrations, followed by tebuconazole. Fludioxonil showed < 50% inhibition at 1 mg/mL for the tested isolates.

2.
Curr Microbiol ; 80(9): 308, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528256

RESUMEN

A single Pectobacterium-like strain named 13-115T was isolated from a specimen of diseased cucumber stem tissue collected on Jeju Island, South Korea. The strain presented a rod-like shape and was negative for Gram staining. When grown on R2A medium at 25 °C, strain 13-115T formed round, convex and white colonies. This strain showed growth at temperatures ranging from 10 to 30 °C and tolerated a pH range of 6-9. The strain could also tolerate NaCl concentrations up to 5%. Analysis of the 16S rRNA gene sequence revealed that strain 13-115T exhibited similarity of over 99% with Pectobacterium brasiliense, P. carotovorum, P. polaris, and P. parvum. By conducting multilocus sequence analyses using dnaX, leuS, and recA genes, a separate phylogenetic lineage was discovered between strain 13-115T and other members of the genus Pectobacterium. Moreover, the strain showed relatively low in silico DNA-DNA hybridization (<60.6%) and average nucleotide identity (ANI) (<94.9%) values with recognized Pectobacterium species. The isolate has a genome size of 5,069,478 bp and a genomic G + C content of 52.04 mol%. Major fatty acids identified in the strain included C16:0 (28.99%), summed feature 3 (C16:1 ω7c and/or C16:1 ω6c; 28.85%), and C18:1 ω7c (19.01%). Pathogenicity assay confirmed that the novel strain induced soft rot symptoms in cucumber plants and Koch's postulates were fulfilled. Molecular analysis and phenotypic data indicated that strain 13-115T could be classified as a new species within the Pectobacterium genus, which has been named Pectobacterium jejuense. The type strain is 13-115T (= KCTC 92800T = JCM 35940T).


Asunto(s)
Cucumis sativus , Pectobacterium , Filogenia , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Pectobacterium/genética , ADN , ADN Bacteriano/genética , ADN Bacteriano/química , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Fosfolípidos/química , Hibridación de Ácido Nucleico
3.
Plant Dis ; 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35380466

RESUMEN

In Korea, most of the grafted watermelons are a fusion of bottle gourd (Lagenaria siceraria) as a rootstock and watermelon (Citrullus lanatus) as a scionstock (Lee et al., 2010). Currently, we have collected several samples from grafted watermelon displaying symptoms of yellowing, withered and wilting leaves. When the symptomatic stem was excised, browning vascular tissues were observed due to the colonization of fungal pathogen. From the samples obtained, 25 fungal isolates were identified as species of Fusarium. Among 25 isolates, 18 were identified as Fusarium oxysporum, four as Fusarium solani, and three as Fusarium equiseti (F. equiseti) . Initial assessment showed that one of the F. equiseti isolates (NIHHS 16-126) was highly virulent to rootstock. Interestingly, this is the first time F. equiseti has been identified pathogenic to grafted watermelon. NIHHS 16-126 isolate was collected from watermelon cultivation field around Buyeo-gun (36.25951°N, 126.92044°E) county. Disease incident was estimated to infect approximately 10% of the watermelon plants cultivated in this area. NIHHS 16-126 isolate was examined to confirm its identity. On potato dextrose agar, colonies appeared yellowish-brown while the aerial mycelium was whitish to peach in color. Macroconidia were relatively long (20.21 - 51.13 × 2.30 - 4.5 µm, n=50), comprise of 3-6 septa, curvature shape and its conidiophores were with monophialides. However, microconidia formation was not observed. These morphological characteristics resemble F. equiseti characters as described by Hyun (2019). For molecular identification, an internal transcribed spacer of ribosomal DNA (ITS-rDNA), elongation factor-1α (EF-1α), and beta-tubulin (ß-tub) genes were sequenced using primer pairs of ITS1/ITS4 (White et al., 1990), EF1-728F/EF1-986R (Glass and Donaldson 1995), and Bt2a/Bt2b (Carbone and Kohn 1999). BLASTN analysis revealed that ITS-rDNA (LC648248), EF-1α (LC648250), and ß-tub (LC648249) sequences were 99-100% identical to F. equiseti reference sequences (KF515650, KF747331, and KF747330) infected Avicennia marina in China (Lu 2014). Phylogenetic analysis of concatenated ITS-rDNA, EF-1α and ß-tub sequences showed that this isolate clustered in the same clade as F. equiseti, confirming its identity as F. equiseti. For the inoculation, roots of 12-days-old seedlings (watermelon and bottle gourd, n=10 each) were dipped in the conidia suspension (1x106 conidia/µL) for 30 min. Inoculated seedlings were planted in the soil before being transferred to the greenhouse (temperature; 30°C, daylight; 14 hours). Control plants were inoculated with sterile water. Results showed that after 21 days post-inoculation, all inoculated bottle gourd seedlings (n=10) wilted and eventually died. In contrast, none of the inoculated watermelons or control seedlings were affected. Re-isolation of three fungal isolates (infected root) showed that their morphology and gene markers sequence were identical to the original isolates thus fulfilled Koch's postulates. Bottle gourd is the most preferred rootstock for grafted watermelons among Korean farmers due to its ability to resist Fusarium spp. infection. Therefore, the identification of F. equiseti as a fungal that is pathogenic to rootstock is crucial information to manage fusarium wilt disease among grafted watermelon. To our knowledge, this is the first report confirming F. equiseti infection in grafted watermelon plants in Korea.

5.
Plant Dis ; 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34433312

RESUMEN

Botryosphaeria dothidea (B. dothidea) is a fungal pathogen commonly associated with stem canker, dieback, and rot disease in a variety of woody plants worldwide (Dong and Guo, 2020). In Korea, B. dothidea was reported to cause a disease problem to serval crops such as apple and blueberry (Kim, 1995; Choi, 2011). In early 2020, a typical symptom resembling the stem rot disease was spotted to occur at a plumcot cultivation area around Wanju (35.827870, 127.030380) province, Korea. At the early stage of infection, a small blister appeared on the plumcot branch and stem. However, as the blister extended, a light brown canker was observed appeared on the infected area and in some cases a sticky sap oozed from the branch bark crack. If not managed or treated properly, all leaves beyond the infection site will turn brown, wilt, and the whole plumcot tree eventually dies. A survey in the affected area showed that approximately 5% of the plumcot trees were infected which cause up to 10% reduction in total production. To identify the causal agent, symptomatic tissues were excised and surface sterilized with 70% ethanol for 30 sec followed by 1% NaClO for 30 sec before rinsing with sterile water, thrice. The samples were then dried with a piece of filter paper and later air-dried before being placed on a potato dextrose agar (PDA). The PDA plates were then incubated at 25°C for 5 days with 12 hours light/dark cycles period. Among several fungal isolates obtained, four were selected for further analyses. Morphological identification revealed that the fungal conidia were hyaline, ovoid, fusiform (type that rarely form a septum) and unicellular with an average size of 18 - 20 µm × 4.5 -5.5 µm (n = 50). These morphological characters have a strong resemblance to B. dothidea that described by Slipper et al., (2004). For molecular identification, Internal transcribed spacer (ITS), beta-tubulin (ß-tubulin) and elongation factor 1 alpha (EF-1α) were amplified and sequenced using universal primer pairs ITS1/ITS4 (White et al., 1990), Bt2a/Bt2b (Glass and Donaldson, 1995) and EF1/EF2 (O'Donnell et al. 1998) respectively. Alignment analysis showed that ITS (LC602817), ß-tubulin (LC602820) and EF-1α (LC602821) sequences were 99-100% identical to the orthologous genes identified in B. dothidea infecting soybean in China [MW130133 (identity 537/536 bp), MW147482 (identity 394/394 bp) and MW147481 (identify 250/250 bp) respectively] (Chen et al. 2021). However, phylogenetic analysis of concatenated ITS, ß-tubulin and EF-1α genes sequence established the identity of these isolate as B. dothidea. Due to the 100% identical at the molecular level, isolate NIHHS 20-262 was selected as a representative for further analysis. For the pathogenicity test, fungal mycelium (via PDA plug) was used as a source of inoculum for both intact and detached plumcot stems trials. For the intact trial, mycelium was inoculated on the wounded spots of ten plumcot stems that grew at the NIHHS trial farm. Ten days post-inoculation (dpi), disease symptoms i.e. stem colour turn from greenish to dark brown was observed at the inoculated sites. For the detached trial, mycelium was inoculated on the wounded spots of ten detached plumcot stems. The inoculated stems were kept in a closed container to maintain 90% humidity before incubated at 25ºC in the dark. Interestingly, on the detached stems, disease symptoms (greenish colour turn to dark brown) were observed to appear seven days early compare to intact stems. A sterile PDA plug replacing fungal mycelium served as a negative control and the result shows no symptoms were observed on either intact or detached control stems. For consistency purposes, pathogenicity tests on intact stems were performed on three different plumcot trees, whereas three biological replicates for detached stems. Isolation and re-identification of two colonies from the infected sites (intact and detached stems) were attempted and the results obtained were identical to the original isolate, thus fulfilling Koch's postulates. Local farmers described this disease as a "certain death disease" in plumcot. Therefore, accurate identification of B. dothidea as the causal agent is critical for effective disease management to minimise qualitative and quantitative losses in the plumcot industry. Although has been reported to cause dieback disease in blueberry in Korea (Choi, 2011), to our knowledge, this is the first study to report B. dothidea causing stem rot diseases on the plumcot trees in Korea.

6.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202675

RESUMEN

Garlic (Allium sativum) is a perennial bulbous plant. Due to its clonal propagation, various diseases threaten the yield and quality of garlic. In this study, we conducted in silico analysis to identify microorganisms, bacteria, fungi, and viruses in six different tissues using garlic RNA-sequencing data. The number of identified microbial species was the highest in inflorescences, followed by flowers and bulb cloves. With the Kraken2 tool, 57% of identified microbial reads were assigned to bacteria and 41% were assigned to viruses. Fungi only made up 1% of microbial reads. At the species level, Streptomyces lividans was the most dominant bacteria while Fusarium pseudograminearum was the most abundant fungi. Several allexiviruses were identified. Of them, the most abundant virus was garlic virus C followed by shallot virus X. We obtained a total of 14 viral genome sequences for four allexiviruses. As we expected, the microbial community varied depending on the tissue types, although there was a dominant microorganism in each tissue. In addition, we found that Kraken2 was a very powerful and efficient tool for the bacteria using RNA-sequencing data with some limitations for virome study.


Asunto(s)
Ajo/microbiología , Metagenoma , Metagenómica , Microbiota , Bacterias/clasificación , Bacterias/genética , Biología Computacional/métodos , Metagenómica/métodos , Especificidad de Órganos , Filogenia , Análisis de Secuencia de ARN
7.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201359

RESUMEN

Red pepper (Capsicum annuum, L.), is one of the most important spice plants in Korea. Overwintering pepper fruits are a reservoir of various microbial pepper diseases. Here, we conducted metagenomics (DNA sequencing) and metatranscriptomics (RNA sequencing) using samples collected from three different fields. We compared two different library types and three different analytical methods for the identification of microbiomes in overwintering pepper fruits. Our results demonstrated that DNA sequencing might be useful for the identification of bacteria and DNA viruses such as bacteriophages, while mRNA sequencing might be beneficial for the identification of fungi and RNA viruses. Among three analytical methods, KRAKEN2 with raw data reads (KRAKEN2_R) might be superior for the identification of microbial species to other analytical methods. However, some microbial species with a low number of reads were wrongly assigned at the species level by KRAKEN2_R. Moreover, we found that the databases for bacteria and viruses were better established as compared to the fungal database with limited genome data. In summary, we carefully suggest that different library types and analytical methods with proper databases should be applied for the purpose of microbiome study.


Asunto(s)
Bacterias/genética , Capsicum/genética , Virus ADN/genética , Frutas/crecimiento & desarrollo , Metagenoma , Virus ARN/genética , Transcriptoma , Bacterias/clasificación , Capsicum/microbiología , Capsicum/virología , Virus ADN/clasificación , Frutas/microbiología , Frutas/virología , Virus ARN/clasificación , Estaciones del Año
8.
Plants (Basel) ; 10(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800297

RESUMEN

Watermelon (Citrulluslanatus) is an economically important fruit crop worldwide. Gummy stem blight (GSB) is one of the most damaging diseases encountered during watermelon cultivation. In the present study, we identified quantitative trait loci (QTLs) associated with GSB resistance in an F2 population derived from a cross between maternal-susceptible line '920533' (C. lanatus) and the paternal-resistant line 'PI 189225' (C. amarus). The resistance of 178 F2 plants was assessed by two different evaluation methods, including leaf lesion (LL) and stem blight (SB). To analyze the QTLs associated with GSB resistance, a linkage map was constructed covering a total genetic distance of 1070.2 cM. QTL analysis detected three QTLs associated with GSB resistance on chromosome 8 and 6. Among them, two QTLs, qLL8.1 and qSB8.1 on chromosome 8 identified as major QTLs, explaining 10.5 and 10.0% of the phenotypic variations localizing at same area and sharing the same top markers for both LL and SB traits, respectively. A minor QTL, qSB6.1, explains 9.7% of phenotypic variations detected on chromosome 6 only for the SB trait. High-throughput markers were developed and validated for the selection of resistant QTLs using watermelon accessions, and commercial cultivars. Four potential candidate genes were predicted associated with GSB resistance based on the physical location of flanking markers on chromosome 8. These findings will be helpful for the development of watermelon cultivars resistant to GSB.

9.
Mycobiology ; 48(5): 418-422, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-33177921

RESUMEN

In 2016, a cercosporoid fungus was found from leaf spot symptoms on melon in Korea. The fungus isolated from the plant was identified based on morphological characteristics and sequence analyses of five genes (ITS rDNA, translation elongation factor 1-α, actin, calmodulin, and histone H3). The fungal isolate was found to be pathogenic to melon. The results confirm that the fungus associated with leaf spot on melon was Cercospora cf. flagellaris. This is the first report of Cercospora cf. flagellaris causing Cercospora leaf spot on melon in Korea.

10.
Plant Dis ; 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32990518

RESUMEN

Plumcot is an interspecific hybrid product between Japanese plums (Prunus salicina) and apricots (Prunus armeniaca) obtained by the NIHHS, Korea in 1999 [1]. At the early of 2017, black spots-like symptoms were observed on plumcot fruits and leaves at cultivation areas in Naju (34.965595, 126.665853) province. Further investigation shows that approximately 60% of the plumcot leaves in the affected orchard were infected, which caused 40% total production loss. At the early stage of infection, disease symptoms appear as small, angular and water-soaked spots and develop into circular brown spots at the later stages of infection. As the disease progresses, the leaf tissues around the spots became yellow and the lesions enlarged. When the adjacent lesions merged and the necrotic tissues fall off, shot-hole symptoms appear on the leaves. To identify the causal agent of this disease, infected leaf tissues were excised and surface-sterilized with 1% NaOCl for 30 secs prior to rinsing with sterile water, thrice . Tissue samples were then placed in sterile water (0.5 mL) for 5 min before its aliquots were streaked onto Luria-Bertani (LB) agar. Plates then were incubated at 28°C. To obtain pure colonies, bacteria were re-streak into a new LB agar and colonies showing typical Xanthomonas spp. morphology (i.e. convex, smooth, yellow, and mucoid) were subjected to Gram staining assay. For molecular identification, 16S ribosomal DNA (16S-rDNA) and gyrase B (gyrB) genes were amplified using a 9F/1512r and UP-1/UP-2Sr primers [2,3] respectively from 5 gram-negative isolates. PCR products were sequenced and analysed using BLASTN. Result shows that 16S-rDNA and gyrB genes are 99-100% identical to a similar genomic region of Xanthomonas arboricola pv. pruni (Xap) isolated in almond (MK156163), peach (MG049922) and apricot (KX950802) respectively [4,5,6]. 16S-rDNA and gyrB gene sequences were deposited in the GenBank (LC485472 and LC576824), whereas pathogen isolate was deposited into Korean Agricultural Culture Collection (KACC19949). Pathogenicity test was performed using Xap bacterial suspension (108 cfu/mL) inoculated on the abaxial and adaxial surface of plumcot detached leaves. For inoculation, 10 healthy young leaves were used whereas, 5 young leaves mock-inoculated with sterile LB broth were used as a control. Both leaf samples were kept in a closed container to maintain 100% humidity before being incubated at 25°C. The water-soaked symptoms were observed visually on the inoculated leaves 2 to 3 days post-inoculation. No water-soaked symptoms were observed on the control leaves. Morphology and sequences of molecular markers used showed that the 3 bacterial colonies re-isolated from the inoculated leaves were identical to the original isolate, fulfilling Koch's postulate. Pathogenicity tests were repeated twice and the results obtained were consistent with the first experiment. As a new variety of stone fruit cultivated in Korea, information about pathogens and registered agrochemicals to control disease outbreak in plumcot are still limited. Therefore, the identification of Xap as a causal agent to the black spot disease is critical for the development of disease management strategies and to identify appropriate agrochemicals to control the occurrence of this disease in the field. To our knowledge, this is the first report of Xap as a causal agent to the shot-hole disease on the plumcot in Korea.

11.
Mycobiology ; 48(4): 321-325, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32952415

RESUMEN

A Colletotrichum species was isolated from leaves of Cymbidium exhibiting symptoms of anthracnose. In this study, the isolates obtained were identified based on recent taxonomic approaches for the genus Colletotrichum. The identity of the causal pathogen was confirmed using morphological data and phylogenetic analysis of combined multi-gene dataset (internal transcribed spacer, glyceraldehyde 3-phosphate dehydrogenase, chitin synthase-1, actin, histone3, beta-tubulin, and calmodulin). Pathogenicity testing revealed that the isolates were pathogenic to Cymbidium. Based on these results, the fungal pathogen occurring on Cymbidium orchids was identified as Colletotrichum cymbidiicola, which is a newly recorded species in Korea.

12.
Plant Dis ; 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967561

RESUMEN

Chinese cabbage (Brassica rapa L.) is one of the most important vegetables in Korea due to its role as the main ingredient for the making of Kimchi. In June 2014, disease symptoms of leaves wilt, dry, and drop off on Chinese cabbage were observed in a Chinese cabbage farm located at Taebeak (37°26'50.7"N 128°95'50.0"E), Gangwon province, Korea. This disease was observed on approximately 35% of the plants in the field, causing an almost 10% decrease in total production. At the early stage of infection, the color at the edge of the plant foliage changed from green to yellow. As the disease progressed, infected leaves wilted, dried off, and detached from the plant. Soft rot that occurred at the base of the leaf stem and root tissues caused the infected leaves to dry and fell off the plant. To identify the causal agent, a small piece of infected leaf tissues was sterilized with 1% sodium hypochlorite solution for 1 min and rinsed with sterile water before it was transferred onto potato dextrose agar (PDA) media. The plates were then incubated at 25°C for 10 days in the dark. Fungal colonies grown on PDA media were of white-creamy in color with an abundance of mycelia and later develop into black color due to the formation of microsclerotia embedded in the media. Microscopic examination showed conidiophores and phialides were both appeared in a verticillate arrangement, whereas conidia were hyaline, smooth-walled, and ellipsoidal to oval with average size 5.4×2.5 µm (n=100). Microsclerotia appeared in elongate to an irregularly spherical shape and greatly variable in size. The morphological attributes of the fungal isolate described above were comparable to the characteristics of Verticillium dahliae Kleb. (V. dahliae) described by Hawksworth and Talboys (1970), and V. dahliae isolated from Chinese cabbage in Japan reported in Kishi (1998). Pathogenicity test was performed by soaking twelve individual Chinese cabbage seedlings for 15 min into fungal pathogen conidial suspension (1x106 conidium/ml) before transferred into soil tray. The same number of non-inoculated seedlings on the soil tray was used as a control. Inoculated and control plants were then covered with a plastic bag for 24 hours to maintain high humidity before transferred into the greenhouse (25°C). Seven days post-inoculation (dpi), treated plant leaves turned yellow, and soft rot was observed. At 10-dpi, plant leaf tissues dried off and severe soft rot occurred. Pathogenicity test was repeated three times and consistent results were obtained. The re-isolated fungal pathogen from the inoculated plants showed identical morphological characteristics to the original isolates, thus fulfilling Koch's postulates. For further identification, PCR amplification targeting Internal Transcribed Spacer (ITS) and RNA polymerase II gene (RPB2) regions were performed (Liu et al., 1999; White et al., 1990). Each PCR product was sequenced and deposited in the GenBank under the accession LC549667 and LC061275, respectively. Sequence analysis using BLAST showed that the nucleotide sequences of ITS and RPB2 DNA fragments are 99-100% identical to the reference strain of V. dahliae available in the NCBI database (MG585719, HE972023, XM_009652520 and DQ522468, respectively). Therefore, based on the results of morphological and molecular analyses, the fungal pathogen isolated from Chinese cabbage in this study was identified as V. dahliae and deposited in the National Institute of Horticultural and Herbal Science germplasm collection (NIHHS 13-252). Recently, due to high demand and a more competitive price, more Chrysanthemum farmers in Korea switch their crops to Chinese cabbage. Interestingly, the occurrence of V. dahliae infection was also reported to occur in Chrysanthemum plants in Korea (Han et al. 2007), which indicates a serious problem ahead to these farmers. Therefore, in this current study, the identification of V. dahliae pathogenic to Chinese cabbage will provide vital knowledge for the development of disease management strategies to minimize the loss of crop production. To our knowledge, this is the first report that V. dahliae causes Verticillium wilt disease on Chinese cabbage in Korea.

13.
Plants (Basel) ; 9(8)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824817

RESUMEN

The dried peach fruits clinging to peach trees or lying on the ground nearby are known as mummified peach fruits. Here, we examined the microbiome communities of three different mummified peach fruits from the nectarine cultivar "Hahong" by DNA- and RNA-sequencing. We found the dominance of Monilinia fructigena followed by Sclerotinia borealis, S. sclerotiorum, and Botrytis cinerea in the mummified peach fruits. Moreover, we found a high number of Proteobacteria, including Frateuria aurantia, Neoasaia chiangmaiensis, Robbsia andropogonis, and Ewingella Americana. Furthermore, we identified several viruses and viroids. Bacteriophages were identified by DNA- and RNA-sequencing, while viruses and viroids with RNA genomes were identified by only RNA-sequencing. Moreover, we identified a novel mycovirus referred to as Monilinia umbra-like virus 1 (MULV1) from M. fructigena. Our results revealed the co-inhabitance of fungi and bacteria in the mummified peach fruits, although dominant microorganisms were present. RNA-sequencing revealed that several fungal and bacterial genes were actively transcribed. Comparative analyses suggested that RNA-sequencing provides more detailed information on microbial communities; however, combining DNA- and RNA-sequencing results increased the diversity of microorganisms, suggesting the importance of databases and analysis tools for microbiome studies. Taken together, our study provides a comprehensive overview of microbial communities in mummified peach fruits by DNA shotgun sequencing and RNA-sequencing.

14.
Mol Plant Microbe Interact ; 33(5): 718-720, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32237963

RESUMEN

Peronospora destructor is an obligate biotrophic oomycete that causes downy mildew on onion (Allium cepa). Onion is an important crop worldwide, but its production is affected by this pathogen. We sequenced the genome of P. destructor using the PacBio sequencing platform, and de novo assembly resulted in 74 contigs with a total contig size of 29.3 Mb and 48.48% GC content. Here, we report the first high-quality genome sequence of P. destructor and its comparison with the genome assemblies of other oomycetes. The genome is a very useful resource to serve as a reference for analysis of P. destructor isolates and for comparative genomic studies of the biotrophic oomycetes.


Asunto(s)
Cebollas/microbiología , Peronospora/genética , Enfermedades de las Plantas/microbiología , Genoma
15.
Plant Pathol J ; 35(6): 635-643, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31832043

RESUMEN

To detect Xanthomonas arboricola pv. pruni, a loop-mediated isothermal amplification (LAMP) detection method were developed. The LAMP assay was designed to test crude plant tissue without pre-extraction, or heating incubation, and without advanced analysis equipment. The LAMP primers were designed by targeting an ABC transporter ATP-binding protein, this primer set was tested using the genomic DNA of Xanthomonas and non-Xanthomonas strains, and a ladder product was generated from the genomic DNA of X. arboricola pv. pruni strain but not from 12 other Xanthomonas species strains and 6 strains of other genera. The LAMP conditions were checked with the healthy leaves of 31 peach varieties, and no reaction was detected using either the peach leaves or the peach DNA as a template. Furthermore, the high diagnostic accuracy of the LAMP method was confirmed with 13 X. arboricola pv. pruni strains isolated from various regions in Korea, with all samples exhibiting a positive reaction in LAMP assays. In particular, the LAMP method successfully detected the pathogen in diseased peach leaves and fruit in the field, and the LAMP conditions were proven to be a reliable diagnostic method for the specific detection and identification of X. arboricola pv. pruni in peach orchards.

16.
Artículo en Inglés | MEDLINE | ID: mdl-30637383

RESUMEN

Erwinia persicina B64 was isolated from rotten onions in cold-storage facilities. Here, we report the complete genome sequence of E. persicina B64, which contains 5,070,450 bp with 55.17% GC content. The genome of this isolate is composed of one chromosome and two plasmids.

17.
Mycobiology ; 45(3): 160-171, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29138620

RESUMEN

Larvae of Bradysia agrestis, an insect vector that transports plant pathogens, were sampled from geographically isolated regions in Korea to identify their cutaneous fungal and bacterial flora. Sampled areas were chosen within the distribution range of B. agrestis; each site was more than 91 km apart to ensure geographical segregation. We isolated 76 microbial (fungi and bacteria) strains (site 1, 29; site 2, 29; site 3, 18 strains) that were identified on the basis of morphological differences. Species identification was molecularly confirmed by determination of universal fungal internal transcribed spacer and bacterial 16S rRNA gene sequences in comparison to sequences in the EzTaxon database and the NCBI GenBank database, and their phylogenetic relationships were determined. The fungal isolates belonged to 2 phyla, 5 classes, and 7 genera; bacterial species belonged to 23 genera and 32 species. Microbial diversity differed significantly among the geographical groups with respect to Margalef's richness (3.9, 3.6, and 4.5), Menhinick's index (2.65, 2.46, and 3.30), Simpson's index (0.06, 0.12, and 0.01), and Shannon's index (2.50, 2.17, and 2.58). Although the microbial genera distribution or diversity values clearly varied among geographical groups, common genera were identified in all groups, including the fungal genus Cladosporium, and the bacterial genera Bacillus and Rhodococcus. According to classic principles of co-evolutionary relationship, these genera might have a closer association with their host insect vector B. agrestis than other genera identified. Some cutaneous bacterial genera (e.g., Pseudomonas) displaying weak interdependency with insect vectors may be hazardous to agricultural environments via mechanical transmission via B. agrestis. This study provides comprehensive information regarding the cutaneous microflora of B. agrestis, which can help in the control of such pests for crop management.

18.
Mycobiology ; 45(2): 64-72, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28781538

RESUMEN

In an ongoing survey of Korean indigenous fungi, three fungal strains belonging to the Sordariomycetes were isolated from soil samples. These strains were designated KNU16-001, KNU16-002, and KNU16-009, and identified as Ambrosiella grosmanniae, Acremonium sclerotigenum, and Trichocladium asperum, respectively, based on morphological characterization and phylogenetic analysis using internal transcribed spacer region sequences of ribosomal DNA. This is the first report of these species in Korea.

19.
Mycobiology ; 44(3): 187-190, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27790070

RESUMEN

In July 2015, diseased leaves of black chokeberry (Aronia melanocarpa) were observed in Danyang and Gochang, Korea. The symptoms appeared as circular or irregular brown leaf spots, from which Alternaria tenuissima was isolated. The isolates were cultured on potato dextrose agar, and their morphological characteristics were observed under a light microscope. The colonies were whitish to ash colored. The pathogenicity test on healthy black chokeberry leaves produced circular brown spots, in line with the original symptoms. Molecular analyses of the ITS, GPD, RPB2, and TEF genes were conducted to confirm the identity of the pathogen. The phylogeny of the multi-gene sequences indicated that the causal agent was A. tenuissima. This study is the first report of A. tenuissima leaf spot on black chokeberry (A. melanocarpa).

20.
Mycobiology ; 43(3): 343-6, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26539053

RESUMEN

In 2006~2010, leaf spot symptoms, that is, small, yellow spots that turned into dark brown-to-black lesions surrounded by a yellow halo, were observed on Cymbidium spp. in Gongju, Taean, and Gapyeong in Korea. A Fusarium species was continuously isolated from symptomatic leaves; in pathogenicity testing, isolates caused leaf spot symptoms consisting of sunken, dark brown lesions similar to the original ones. The causal pathogen was identified as Fusarium subglutinans based on morphological and translation elongation factor 1-alpha sequence analyses. This is the first report of F. subglutinans as the cause of leaf spot disease in Cymbidium spp. in Korea.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA