Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 133(3): 584-98, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18494733

RESUMEN

Ferredoxins are the major distributors for electrons to the various acceptor systems in plastids. In green tissues, ferredoxins are reduced by photosynthetic electron flow in the light, while in heterotrophic tissues, nicotinamide adenine dinucleotide (reduced) (NADPH) generated in the oxidative pentose-phosphate pathway (OPP) is the reductant. We have used a Ds-T-DNA insertion line of Arabidopsis thaliana for the gene encoding the major leaf ferredoxin (Fd2, At1g60950) to create a situation of high electron pressure in the thylakoids. Although these plants (Fd2-KO) possess only the minor fraction of leaf Fd1 (At1g10960), they grow photoautotrophically on soil, but with a lower growth rate and less chlorophyll. The more oxidized conditions in the stroma due to the formation of reactive oxygen species are causing a re-adjustment of the redox state in these plants that helps them to survive even under high light. Redox homeostasis is achieved by regulation at both, the post-translational and the transcriptional level. Over-reduction of the electron transport chain leads to increased transcription of the malate-valve enzyme NADP-malate dehydrogenase (MDH), and the oxidized stroma leads to an increased transcription of the OPP enzyme glucose-6-P dehydrogenase. In isolated spinach chloroplasts, oxidized conditions give rise to a decreased activation state of NADP-MDH and an activation of glucose-6-P dehydrogenase even in the light. In Fd2-KO plants, NADPH-requiring antioxidant systems are upregulated. These adjustments must be caused by plastid signals, and they prevent oxidative damage under rather severe conditions.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ferredoxinas/genética , Mutación , Hojas de la Planta/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Western Blotting , Clorofila/metabolismo , Ferredoxinas/metabolismo , Ferredoxinas/fisiología , Regulación de la Expresión Génica de las Plantas , Oxidación-Reducción , Fotosíntesis/genética , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología
2.
J Mol Evol ; 65(4): 437-55, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17925997

RESUMEN

The transcriptional regulation of NADP-malate dehydrogenase (NADP-MDH) was analyzed in Arabidopsis ecotypes and other Brassicaceae. The amount of transcript increased twofold after transfer into low temperature (12 degrees C) or high light (750 microE) in all species. Analysis of the genomic DNA reveals that the NADP-MDH gene (At5g58330 in A. thaliana) in Brassicaceae is located between two other genes (At5g58320 and At5g58340 in Arabidopsis), both encoded on the opposite DNA strand. No promoter elements were identified in 5' direction of the NADP-MDH gene, and the expression of NADP-MDH was not affected in knock-out plants carrying a DNA insert in the 5' region. A yeast-one hybrid approach yielded only three DNA-binding proteins for the 500-bp fragment located upstream of the ATG sequence, but 34 proteins for its coding region. However, in Chlamydomonas and in some Poaceae, which do not possess any genes within the 1200 bp upstream region, typical promoter elements were identified. Alignments of genomic DNA reveal that, in contrast to Poaceae, the introns are highly conserved within Brassicaceae. We conclude that in Brassicaceae the majority of regulatory elements are located within the coding region. The NADP-MDH gene of both families evolved from a common precursor, similar to the gene in Chlamydomonas. Changes in the selection pressure allowed the insertion of At5g58340 into the promoter region of a common ancestor. When the demand for transcriptional regulation increased, At5g58340 disappeared in Poaceae, and a promoter developed in the 5' region. In contrast, Brassicaceae maintained At5g58340 and shifted all regulatory elements into the coding region of NADP-MDH.


Asunto(s)
Proteínas de Unión al ADN/genética , Malato Deshidrogenasa/genética , NADP/metabolismo , Proteínas de Plantas/genética , Transcripción Genética , Secuencia de Aminoácidos , Secuencia de Bases , Northern Blotting , Cartilla de ADN , Evolución Molecular , Malato Deshidrogenasa/química , Malato Deshidrogenasa/metabolismo , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
3.
Planta ; 224(2): 380-93, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16435132

RESUMEN

Arabidopsis thaliana L. (Heynh.) plants were grown in low light (150 micromol photons m(-2) s(-1) and 20 degrees C) either in short days (7.5 h photoperiod) or long days (16 h photoperiod), and then transferred into high light and low temperature (350-800 micromol photons m(-2) s(-1) at 12 degrees C). Plants grown in short days responded with a rapid increase in NADP-malate dehydrogenase (EC 1.1.1.82) activation state. However, persisting overreduction revealed a new level of regulation of the malate valve. Activity measurements and Northern-blot analyses indicated that NADP-malate dehydrogenase transcript and protein levels increased within a few hours. Using macroarrays, additional changes in gene expression were identified. Transcript levels for several enzymes of glutathione metabolism and of some photosynthetic genes increased. The cellular glutathione level increased, but its redox state remained unchanged. A different situation was observed in plants grown in long-day conditions. Neither NADP-malate dehydrogenase nor glutathione content changed, but the expression of several antioxidative enzymes increased strongly. We conclude that the endogenous systems that measure day length interact with redox regulation, and override the interpretation of the signals, i.e. they redirect redox-mediated acclimation signals to allow for more efficient light usage and redox poising in short days to systems for the prevention of oxidative damages when grown under long-day conditions.


Asunto(s)
Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Luz , Fotoperiodo , Antioxidantes/metabolismo , Clorofila/metabolismo , Fluorescencia , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Malato-Deshidrogenasa (NADP+)/metabolismo , Malatos/metabolismo , Oxidación-Reducción/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
J Exp Bot ; 56(416): 1481-9, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15851411

RESUMEN

Plants perform photosynthesis and assimilatory processes in a continuously changing environment. Energy production in the various cell compartments and energy consumption in endergonic processes have to be well adjusted to the varying conditions. In addition, dissipatory pathways are required to avoid any detrimental effects caused by over-reduction. A large number of short-term and long-term mechanisms interact with each other in a flexible way, depending on intensity and the type of impact. Therefore, all levels of regulation are involved, starting from energy absorption and electron flow events through to post-transcriptional control. The simultaneous presence of strong oxidants and strong reductants during oxygenic photosynthesis is the basis for regulation. However, redox-dependent control also interacts with other signal transduction pathways in order to adapt metabolic processes and redox-control to the developmental state. Examples are given here for short-term and long-term control following changes of light intensity and photoperiod, focusing on the dynamic nature of the plant regulatory systems. An integrating network of all these mechanisms exists at all levels of control. Cellular homeostasis will be maintained as long as the mechanisms for acclimation are present in sufficiently high capacities. If an impact is too rapid, and acclimation on the level of gene expression cannot occur, cellular damage and cell death are initiated.


Asunto(s)
Adaptación Fisiológica , Fotosíntesis/fisiología , Plantas/metabolismo , Ferredoxinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Luz , Oxidación-Reducción , Proteínas de Plantas/metabolismo , Tiorredoxinas/metabolismo
5.
Appl Microbiol Biotechnol ; 67(4): 532-8, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15660219

RESUMEN

The genes for the bacteriocins enterocin A and B were isolated from Enterococcus faecium ATB 197a. Using the pET37b(+) vector, the enterocin genes were fused to an Escherichia coli specific export signal sequence, a cellulose-binding domain (CBD(cenA)) and a S-tag under the control of a T7lac promotor. The constructs were subsequently cloned into E. coli host cells. The expression of the recombinant enterocins had different effects on both the host cells and other Gram-positive bacteria. The expression of entA in Esc. coli led to the synthesis and secretion of functional active enterocin A fusion proteins, which were active against some Gram-positive indicator bacteria, but did not influence the viability of the host cells. In contrast, the expression of enterocin B fusion proteins led to a reduced viability of the host cells, indicating a misfolding of the protein or interference with the cellular metabolism of Esc. coli. Indicator strains of Gram-positive bacteria were not inhibited by purified enterocin B fusion proteins. However, recombinant enterocin B displayed inhibitory activity after the proteolytic cleavage of the fused peptides.


Asunto(s)
Bacteriocinas/farmacología , Listeria/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Bacteriocinas/genética , Bacteriocinas/metabolismo , Biotecnología/métodos , Celulosa/metabolismo , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
6.
Plant Physiol ; 133(4): 1768-78, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14645726

RESUMEN

A complete ferredoxin (Fd) cDNA clone was isolated from potato (Solanum tuberosum L. cv Desiree) leaves. By molecular and immunoblot analysis, the gene was identified as the leaf-specific Fd isoform I. Transgenic potato plants were constructed by introducing the homologous potato fed 1 cDNA clone as an antisense construct under the control of the constitutive cauliflower mosaic virus 35S promoter. Stable antisense lines with Fd contents between 40% and 80% of the wild-type level were selected by northern- and western-blot analysis. In short-term experiments, the distribution of electrons toward their stromal acceptors was altered in the mutant plants. Cyclic electron transport, as determined by the quantum yields of photosystems I and II, was enhanced. The CO2 assimilation rate was decreased, but depending on the remaining Fd content, some lines showed photoinhibition. The leaf protein content remained largely constant, but the antisense plants had a lower total chlorophyll content per unit leaf area and an increased chlorophyll a/b ratio. In the antisense plants, the redox state of the quinone acceptor A in photosystem II (QA) was more reduced than that of the wild-type plants under all experimental conditions. Because the plants with lower Fd amounts reacted as if they were grown under a higher light intensity, the possibility that the altered chloroplast redox state affects light acclimation is discussed.


Asunto(s)
Ferredoxinas/genética , Regulación de la Expresión Génica de las Plantas/genética , Fotosíntesis/fisiología , Plantas Modificadas Genéticamente/genética , Solanum tuberosum/genética , Agrobacterium tumefaciens/genética , Secuencia de Aminoácidos , Clorofila/metabolismo , Clorofila A , Clonación Molecular , ADN Complementario/genética , Ferredoxinas/química , Ferredoxinas/metabolismo , Luz , Datos de Secuencia Molecular , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA