Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 297(6): 101423, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34801558

RESUMEN

Pyruvate formate-lyase (PFL) is a glycyl radical enzyme (GRE) that converts pyruvate and coenzyme A into acetyl-CoA and formate in a reaction that is crucial to the primary metabolism of many anaerobic bacteria. The glycyl radical cofactor, which is posttranslationally installed by a radical S-adenosyl-L-methionine (SAM) activase, is a simple and effective catalyst, but is also susceptible to oxidative damage in microaerobic environments. Such damage occurs at the glycyl radical cofactor, resulting in cleaved PFL (cPFL). Bacteria have evolved a spare part protein termed YfiD that can be used to repair cPFL. Previously, we obtained a structure of YfiD by NMR spectroscopy and found that the N-terminus of YfiD was disordered and that the C-terminus of YfiD duplicates the structure of the C-terminus of PFL, including a ß-strand that is not removed by the oxygen-induced cleavage. We also showed that cPFL is highly susceptible to proteolysis, suggesting that YfiD rescue of cPFL competes with protein degradation. Here, we probe the mechanism by which YfiD can bind and restore activity to cPFL through enzymatic and spectroscopic studies. Our data show that the disordered N-terminal region of YfiD is important for YfiD glycyl radical installation but not for catalysis, and that the duplicate ß-strand does not need to be cleaved from cPFL for YfiD to bind. In fact, truncation of this PFL region prevents YfiD rescue. Collectively our data suggest the molecular mechanisms by which YfiD activation is precluded both when PFL is not damaged and when it is highly damaged.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Oxígeno/metabolismo , Proteolisis , Acetiltransferasas/química , Acetiltransferasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Oxidación-Reducción , Oxígeno/química , Conformación Proteica en Lámina beta , Dominios Proteicos
2.
Cell Chem Biol ; 28(9): 1333-1346.e7, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-33773110

RESUMEN

Desulfonation of isethionate by the bacterial glycyl radical enzyme (GRE) isethionate sulfite-lyase (IslA) generates sulfite, a substrate for respiration that in turn produces the disease-associated metabolite hydrogen sulfide. Here, we present a 2.7 Å resolution X-ray structure of wild-type IslA from Bilophila wadsworthia with isethionate bound. In comparison with other GREs, alternate positioning of the active site ß strands allows for distinct residue positions to contribute to substrate binding. These structural differences, combined with sequence variations, create a highly tailored active site for the binding of the negatively charged isethionate substrate. Through the kinetic analysis of 14 IslA variants and computational analyses, we probe the mechanism by which radical chemistry is used for C-S bond cleavage. This work further elucidates the structural basis of chemistry within the GRE superfamily and will inform structure-based inhibitor design of IsIA and thus of microbial hydrogen sulfide production.


Asunto(s)
Carbono/metabolismo , Liasas/metabolismo , Azufre/metabolismo , Bilophila/enzimología , Carbono/química , Cristalografía por Rayos X , Liasas/química , Modelos Moleculares , Azufre/química
3.
J Biol Inorg Chem ; 24(6): 817-829, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31250200

RESUMEN

Glycyl radical enzymes (GREs) utilize a glycyl radical cofactor to carry out a diverse array of chemically challenging enzymatic reactions in anaerobic bacteria. Although the glycyl radical is a powerful catalyst, it is also oxygen sensitive such that oxygen exposure causes cleavage of the GRE at the site of the radical. This oxygen sensitivity presents a challenge to facultative anaerobes dwelling in areas prone to oxygen exposure. Once GREs are irreversibly oxygen damaged, cells either need to make new GREs or somehow repair the damaged one. One particular GRE, pyruvate formate lyase (PFL), can be repaired through the binding of a 14.3 kDa protein, termed YfiD, which is constitutively expressed in E. coli. Herein, we have solved a solution structure of this 'spare part' protein using nuclear magnetic resonance spectroscopy. These data, coupled with data from circular dichroism, indicate that YfiD has an inherently flexible N-terminal region (residues 1-60) that is followed by a C-terminal region (residues 72-127) that has high similarity to the glycyl radical domain of PFL. Reconstitution of PFL activity requires that YfiD binds within the core of the PFL barrel fold; however, modeling suggests that oxygen-damaged, i.e. cleaved, PFL cannot fully accommodate YfiD. We further report that a PFL variant that mimics the oxygen-damaged enzyme is highly susceptible to proteolysis, yielding additionally truncated forms of PFL. One such PFL variant of ~ 77 kDa makes an ideal scaffold for the accommodation of YfiD. A molecular model for the rescue of PFL activity by YfiD is presented.


Asunto(s)
Acetiltransferasas/química , Acetiltransferasas/metabolismo , Oxígeno/metabolismo , Secuencia de Aminoácidos , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectroscopía de Resonancia Magnética , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
4.
Crit Rev Biochem Mol Biol ; 52(6): 674-695, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28901199

RESUMEN

Glycyl radical enzymes (GREs) are important biological catalysts in both strict and facultative anaerobes, playing key roles both in the human microbiota and in the environment. GREs contain a backbone glycyl radical that is post-translationally installed, enabling radical-based mechanisms. GREs function in several metabolic pathways including mixed acid fermentation, ribonucleotide reduction and the anaerobic breakdown of the nutrient choline and the pollutant toluene. By generating a substrate-based radical species within the active site, GREs enable C-C, C-O and C-N bond breaking and formation steps that are otherwise challenging for nonradical enzymes. Identification of previously unknown family members from genomic data and the determination of structures of well-characterized GREs have expanded the scope of GRE-catalyzed reactions as well as defined key features that enable radical catalysis. Here, we review the structures and mechanisms of characterized GREs, classifying members into five categories. We consider the open questions about each of the five GRE classes and evaluate the tools available to interrogate uncharacterized GREs.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Microbiota , Acetiltransferasas/química , Acetiltransferasas/metabolismo , Anaerobiosis , Bacterias/química , Proteínas Bacterianas/química , Carboxiliasas/química , Carboxiliasas/metabolismo , Fermentación , Humanos , Ligasas/química , Ligasas/metabolismo , Modelos Moleculares , Conformación Proteica , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo
5.
Breast Cancer Res Treat ; 166(3): 725-741, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28849346

RESUMEN

PURPOSE: ATM activates the NF-κB transcriptional complex in response to genotoxic and oxidative stress. The purpose of this study was to examine if the NF-κB target gene and critical antioxidant SOD2 (MnSOD) in cultured mammary epithelium is also ATM-dependent, and what phenotypes arise from deletion of ATM and SOD2 within the mammary gland. METHODS: SOD2 expression was studied in human mammary epithelial cells and MCF10A using RNAi to knockdown ATM or the NF-κB subunit RelA. To study ATM and SOD2 function in mammary glands, mouse lines containing Atm or Sod2 genes containing LoxP sites were mated with mice harboring Cre recombinase under the control of the whey acidic protein promoter. Quantitative PCR was used to measure gene expression, and mammary gland structure was studied using histology. RESULTS: SOD2 expression is ATM- and RelA-dependent, ATM knockdown renders cells sensitive to pro-oxidant exposure, and SOD mimetics partially rescue this sensitivity. Mice with germline deletion of Atm fail to develop mature mammary glands, but using a conditional knockout approach, we determined that Atm deletion significantly diminished the expression of Sod2. We also observed that these mice (termed AtmΔ/Δ) displayed a progressive lactation defect as judged by reduced pup growth rate, aberrant lobulo-alveolar structure, diminished milk protein gene expression, and increased apoptosis within lactating glands. This phenotype appears to be linked to dysregulated Sod2 expression as mammary gland-specific deletion of Sod2 phenocopies defects observed in AtmΔ/Δ dams. CONCLUSIONS: We conclude that ATM is required to promote expression of SOD2 within the mammary epithelium, and that both ATM and SOD2 play a crucial role in mammary gland homeostasis.


Asunto(s)
Neoplasias de la Mama/genética , Superóxido Dismutasa/genética , Factor de Transcripción ReIA/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Neoplasias de la Mama/patología , Diferenciación Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Homeostasis , Humanos , Integrasas/genética , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Ratones , Estrés Oxidativo/genética
6.
J Biol Chem ; 291(41): 21541-21552, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27535224

RESUMEN

Reduced ATM function has been linked to breast cancer risk, and the TRIM29 protein is an emerging breast cancer tumor suppressor. Here we show that, in cultured breast tumor and non-tumorigenic mammary epithelial cells, TRIM29 is up-regulated in response to hypoxic stress but not DNA damage. Hypoxia-induced up-regulation of TRIM29 is dependent upon ATM and HIF1α and occurs through increased transcription of the TRIM29 gene. Basal expression of TRIM29 is also down-regulated in cells expressing diminished levels of ATM, and findings suggest that this occurs through basal NF-κB activity as knockdown of the NF-κB subunit RelA suppresses TRIM29 abundance. We have previously shown that the activity of the TWIST1 oncogene is antagonized by TRIM29 and now show that TRIM29 is necessary to block the up-regulation of TWIST1 that occurs in response to hypoxic stress. This study establishes TRIM29 as a hypoxia-induced tumor suppressor gene and provides a novel molecular mechanism for ATM-dependent breast cancer suppression.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neoplasias de la Mama/metabolismo , Proteínas de Unión al ADN/biosíntesis , Transducción de Señal , Factores de Transcripción/biosíntesis , Proteínas Supresoras de Tumor/biosíntesis , Proteínas de la Ataxia Telangiectasia Mutada/genética , Neoplasias de la Mama/genética , Hipoxia de la Célula , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Femenino , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
7.
Breast Cancer Res Treat ; 151(1): 75-87, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25862169

RESUMEN

Reactive oxygen species (ROS) are thought to be among the initiating insults that drive carcinogenesis; however, beyond the mutagenic properties of ROS, it is unclear how reactive oxygen species and response to redox imbalance may shape cancer phenotype. We have previously observed that basal activity of the powerfully oncogenic transcription factor NF-κB in cultured breast cancer and other tumor cell lines is dependent upon the DNA damage-responsive kinase ATM. Here we show that, in MDA-MB-231 and HeLa cells, basal ATM-dependent NF-κB activation occurs through a canonical DNA damage-responsive signaling pathway as knockdown of two proteins involved in this signaling pathway, ERC1 and TAB1, results in loss of NF-κB basal activity. We further show that knockdown of ATM in MDA-MB-231, a breast cancer line with a pronounced mesenchymal phenotype, results in the reversion of these cells to an epithelial morphology and gene expression pattern. Culture of MDA-MB-231 and HeLa cells on the antioxidant N-acetyl cysteine (NAC) blunted NF-κB transcriptional activity, and long-term culture on low doses of NAC resulted in coordinate reductions in steady-state ROS levels, acquisition of an epithelial morphology, as well as upregulation of epithelial and downregulation of mesenchymal marker gene expression. Moreover, these reversible effects are attributable, at least in part, to downregulation of ATM-dependent NF-κB signaling in MDA-MB-231 cells as RNAi-mediated knockdown of the NF-κB subunit RelA or its upstream activator TG2 produced similar alterations in phenotype. We conclude that chronic activation of ATM in response to persistent ROS insult triggers continual activation of the oncogenic NF-κB transcriptional complex that, in turn, promotes aggressive breast cancer phenotype.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Neoplasias de la Mama/genética , Factor de Transcripción ReIA/biosíntesis , Activación Transcripcional/genética , Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Neoplasias de la Mama/patología , Línea Celular Tumoral , Daño del ADN/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , FN-kappa B/biosíntesis , FN-kappa B/genética , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Factor de Transcripción ReIA/genética , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA