Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(17): e2316646121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625943

RESUMEN

Circadian regulation and temperature dependency are important orchestrators of molecular pathways. How the integration between these two drivers is achieved, is not understood. We monitored circadian- and temperature-dependent effects on transcription dynamics of cold-response protein RNA Binding Motif 3 (Rbm3). Temperature changes in the mammalian master circadian pacemaker, the suprachiasmatic nucleus (SCN), induced Rbm3 transcription and regulated its circadian periodicity, whereas the core clock gene Per2 was unaffected. Rbm3 induction depended on a full Brain And Muscle ARNT-Like Protein 1 (Bmal1) complement: reduced Bmal1 erased Rbm3 responses and weakened SCN circuit resilience to temperature changes. By focusing on circadian and temperature dependency, we highlight weakened transmission between core clock and downstream pathways as a potential route for reduced circadian resilience.


Asunto(s)
Ritmo Circadiano , Proteínas Circadianas Period , Animales , Ritmo Circadiano/fisiología , Temperatura , Proteínas Circadianas Period/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , ARN/metabolismo , Núcleo Supraquiasmático/metabolismo , Mamíferos/genética
2.
Glia ; 71(7): 1770-1785, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37002718

RESUMEN

Loss of function of the astrocyte membrane protein MLC1 is the primary genetic cause of the rare white matter disease Megalencephalic Leukoencephalopathy with subcortical Cysts (MLC), which is characterized by disrupted brain ion and water homeostasis. MLC1 is prominently present around fluid barriers in the brain, such as in astrocyte endfeet contacting blood vessels and in processes contacting the meninges. Whether the protein plays a role in other astrocyte domains is unknown. Here, we show that MLC1 is present in distal astrocyte processes, also known as perisynaptic astrocyte processes (PAPs) or astrocyte leaflets, which closely interact with excitatory synapses in the CA1 region of the hippocampus. We find that the PAP tip extending toward excitatory synapses is shortened in Mlc1-null mice. This affects glutamatergic synaptic transmission, resulting in a reduced rate of spontaneous release events and slower glutamate re-uptake under challenging conditions. Moreover, while PAPs in wildtype mice retract from the synapse upon fear conditioning, we reveal that this structural plasticity is disturbed in Mlc1-null mice, where PAPs are already shorter. Finally, Mlc1-null mice show reduced contextual fear memory. In conclusion, our study uncovers an unexpected role for the astrocyte protein MLC1 in regulating the structure of PAPs. Loss of MLC1 alters excitatory synaptic transmission, prevents normal PAP remodeling induced by fear conditioning and disrupts contextual fear memory expression. Thus, MLC1 is a new player in the regulation of astrocyte-synapse interactions.


Asunto(s)
Astrocitos , Proteínas de la Membrana , Sinapsis , Animales , Ratones , Astrocitos/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Sinapsis/metabolismo
3.
Front Cell Neurosci ; 17: 1085690, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36779013

RESUMEN

Introduction: Astrocyte-synapse bi-directional communication is required for neuronal development and synaptic plasticity. Astrocytes structurally interact with synapses using their distal processes also known as leaflets or perisynaptic astrocytic processes (PAPs). We recently showed that these PAPs are retracted from hippocampal synapses, and involved in the consolidation of fear memory. However, whether astrocytic synaptic coverage is affected when memory is impaired is unknown. Methods: Here, we describe in detail an electron microscopy method that makes use of a large number of 2D images to investigate structural astrocyte-synapse interaction in paraformaldehyde fixed brain tissue of mice. Results and discussion: We show that fear memory-induced synaptic activation reduces the interaction between the PAPs and the presynapse, but not the postsynapse, accompanied by retraction of the PAP tip from the synaptic cleft. Interestingly, this retraction is absent in the APP/PS1 mouse model of Alzheimer's disease, supporting the concept that alterations in astrocyte-synapse coverage contribute to memory processing.

4.
Biol Psychiatry ; 94(3): 226-238, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36702661

RESUMEN

BACKGROUND: The formation and retrieval of fear memories depends on orchestrated synaptic activity of neuronal ensembles within the hippocampus, and it is becoming increasingly evident that astrocytes residing in the environment of these synapses play a central role in shaping cellular memory representations. Astrocyte distal processes, known as leaflets, fine-tune synaptic activity by clearing neurotransmitters and limiting glutamate diffusion. However, how astroglial synaptic coverage contributes to mnemonic processing of fearful experiences remains largely unknown. METHODS: We used electron microscopy to observe changes in astroglial coverage of hippocampal synapses during consolidation of fear memory in mice. To manipulate astroglial synaptic coverage, we depleted ezrin, an integral leaflet-structural protein, from hippocampal astrocytes using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing. Next, a combination of Föster resonance energy transfer analysis, genetically encoded glutamate sensors, and whole-cell patch-clamp recordings was used to determine whether the proximity of astrocyte leaflets to the synapse is critical for synaptic integrity and function. RESULTS: We found that consolidation of a recent fear memory is accompanied by a transient retraction of astrocyte leaflets from hippocampal synapses and increased activation of NMDA receptors. Accordingly, astrocyte-specific depletion of ezrin resulted in shorter astrocyte leaflets and reduced astrocyte contact with the synaptic cleft, which consequently boosted extrasynaptic glutamate diffusion and NMDA receptor activation. Importantly, after fear conditioning, these cellular phenotypes translated to increased retrieval-evoked activation of CA1 pyramidal neurons and enhanced fear memory expression. CONCLUSIONS: Together, our data show that withdrawal of astrocyte leaflets from the synaptic cleft is an experience-induced, temporally regulated process that gates the strength of fear memories.

5.
Cells ; 11(9)2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35563732

RESUMEN

Astrocytes are specialized glial cells that tile the central nervous system (CNS) and perform numerous essential functions. Astrocytes react to various forms of CNS insults by altering their morphology and molecular profile, through a process known as reactive astrogliosis. Accordingly, astrocyte reactivity is apparent in many neurodegenerative diseases, among which one is Alzheimer's disease (AD). Recent clinical trials on early-stage AD have demonstrated that Fortasyn Connect (FC), a multi-nutrient combination providing specific precursors and cofactors for phospholipid synthesis, helps to maintain neuronal functional connectivity and cognitive performance of patients. Several studies have shown that FC may act through its effects on neuronal survival and synaptogenesis, leading to reduced astrocyte reactivity, but whether FC can directly counteract astrocyte reactivity remains to be elucidated. Hence, we developed an in vitro model of reactive astrogliosis using the pro-inflammatory cytokines TNF-α and IFN-γ together with an automated high-throughput assay (AstroScan) to quantify molecular and morphological changes that accompany reactive astrogliosis. Next, we showed that FC is potent in preventing cytokine-induced reactive astrogliosis, a finding that might be of high relevance to understand the beneficial effects of FC-based interventions in the context of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Gliosis , Astrocitos , Citocinas/farmacología , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Humanos , Inflamación , Neuronas , Nutrientes , Fosfolípidos
6.
Curr Protoc Neurosci ; 91(1): e91, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32068967

RESUMEN

Astrocytes are morphologically complex cells with numerous close contacts with neurons at the level of their somata, branches, and branchlets. The smallest astrocyte processes make discrete contacts with synapses at scales that cannot be observed by standard light microscopy. At such contact points, astrocytes are thought to perform both homeostatic and neuromodulatory roles-functions that are proposed to be determined by their close spatial apposition. To study such spatial interactions, we previously developed a Förster resonance energy transfer (FRET)-based approach, which enables observation and tracking of the static and dynamic proximity of astrocyte processes with synapses. The approach is compatible with standard imaging techniques such as confocal microscopy and permits assessment of the most proximate contacts between astrocytes and neurons in live tissues. In this protocol article we describe the approach to analyze the contacts between striatal astrocyte processes and corticostriatal neuronal projection terminals onto medium spiny neurons. We report the required protocols in detail, including adeno-associated virus microinjections, acute brain slice preparation, imaging, and post hoc FRET quantification. The article provides a detailed description that can be used to characterize and study astrocyte process proximity to synapses in living tissue. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Förster resonance energy transfer imaging in cultured cells Basic Protocol 2: Förster resonance energy transfer imaging with the neuron-astrocyte proximity assay in acute brain slices.


Asunto(s)
Astrocitos/citología , Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Confocal/métodos , Neuronas/citología , Animales , Encéfalo/citología , Comunicación Celular , Células Cultivadas , Dependovirus/genética , Femenino , Vectores Genéticos , Células HEK293 , Humanos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Microinyecciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA