Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 8058, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198400

RESUMEN

Bulk foam analysis (static test) is simple and fast, which makes it a cost-effective method for screening and ranking hundreds of surfactants being considered for foam applications. Coreflood tests (dynamic test) can also be used, but it is quite laborious and costly. However, previous reports show that ranking based on static tests sometimes differs from ranking based on dynamic tests. To date, the reason for such a discrepancy is not well understood. Some believe that it may be due to faulty experimental design while some others believe that there is no discrepancy if the right foam performance indices are used to describe and compare the results from both methods. For the first time, this study reports a systematic series of static tests conducted on different foaming solutions (with surfactant concentration ranging from 0.025 to 5 wt%) and duplicated in dynamic tests using the same core sample for all the surfactant solutions. The dynamic test was also repeated on three different rocks of a wide permeability range (26-5000 mD) for each of the surfactant solutions. Unlike previous studies, here multiple dynamic foam indices (limiting capillary pressure, apparent viscosity, trapped foam, and trapped to mobile foam ratio) were measured and compared with the performance indices measured from the static tests (foam texture and foam half-life). Dynamic tests were in total agreement with static tests for all the foam formulations. However, it was observed that the pore size of the base filter disk used in the static foam analyzer can be a potential source of conflicting results when comparing with dynamic test. This is because a threshold pore size exists above which some foam properties (apparent viscosity and trapped foam) significantly decreased compared to the properties before that threshold. Foam limiting capillary pressure is the only foam property that does not show such a trend. It also appears that such threshold occurs above a certain surfactant concentration (0.025 wt%). Apparently, it becomes imperative that the pore size of the filter disk used in the static test and the porous medium used in dynamic tests must be on the same side of the threshold point, otherwise there may be disparity in their results. The threshold surfactant concentration should also be determined. The role of these two factors (pore size and surfactant concentration) requires further investigation.

2.
Environ Sci Pollut Res Int ; 29(28): 42560-42600, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35380322

RESUMEN

Water and wastewater treatment applications stand to benefit immensely from the design and development of new materials based on silica nanoparticles and their derivatives. Nanosilica possesses unique properties, including low toxicity, chemical inertness, and excellent biocompatibility, and can be developed from a variety of sustainable precursor materials. Herein, we provide an account of the recent advances in the synthesis and utilization of nanosilica for wastewater treatment. This review covers key physicochemical aspects of several nanosilica materials and a variety of nanotechnology-enabled wastewater treatment techniques such as adsorption, separation membranes, and antimicrobial applications. It also discusses the prospective design and tuning options for nanosilica production, such as size control, morphological tuning, and surface functionalization. Informative discussions on nanosilica production from agricultural wastes have been offered, with a focus on the synthesis methodologies and pretreatment requirements for biomass precursors. The characterization of the different physicochemical features of nanosilica materials using critical surface analysis methods is discussed. Bio-hybrid nanosilica materials have also been highlighted to emphasize the critical relevance of environmental sustainability in wastewater treatment. To guarantee the thoroughness of the review, insights into nanosilica regeneration and reuse are provided. Overall, it is envisaged that this work's insights and views will inspire unique and efficient nanosilica material design and development with robust properties for water and wastewater treatment applications.


Asunto(s)
Aguas Residuales , Purificación del Agua , Estudios Prospectivos , Dióxido de Silicio/química , Agua , Purificación del Agua/métodos
3.
Environ Sci Pollut Res Int ; 28(44): 62085-62104, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34590224

RESUMEN

This work comprehensively reviewed the toxicity and risks of various surfactants and their degraded products in the environmental matrices, various analytical procedures, and remediation methods for these surfactants. The findings revealed that the elevated concentration of surfactants and their degraded products disrupt microbial dynamics and their important biogeochemical processes, hinder plant-surviving processes and their ecological niche, and retard the human organic and systemic functionalities. The enormous adverse effects of surfactants on health and the environment necessitate the need to develop, select, and advance the various analytical and assessment techniques to achieve effective identification and quantification of several surfactants in different environmental matrices. Considering the presence of surfactants in trace concentration and environmental matrices, excellent analysis can only be achieved with appropriate extraction, purification, and preconcentration. Despite these pre-treatment procedures, the chromatographic technique is the preferred analytical technique considering its advancement and shortcomings of other techniques. In the literature, the choice or selection of remediation techniques for surfactants depends largely on eco-friendliness, cost-implications, energy requirements, regeneration potential, and generated sludge composition and volume. Hence, the applications of foam fractionation, electrochemical advanced oxidation processes, thermophilic aerobic membranes reactors, and advanced adsorbents are impressive in the clean-up of the surfactants in the environment. This article presents a compendium of knowledge on environmental toxicity and risks, analytical techniques, and remediation methods of surfactants as a guide for policymakers and researchers.


Asunto(s)
Restauración y Remediación Ambiental , Tensoactivos , Sustancias Peligrosas , Humanos , Plantas , Aguas del Alcantarillado , Tensoactivos/toxicidad
4.
J Biomol Struct Dyn ; 37(12): 3029-3040, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30058446

RESUMEN

Ebola virus (EBOV) is a lethal human pathogen with a risk of global spread of its zoonotic infections, and Ebolavirus Zaire specifically has the highest fatality rate amongst other species. There is a need for continuous effort towards having therapies, as a single licensed treatment to neutralize the EBOV is yet to come into reality. This present study virtually screened the MCULE database containing almost 36 million compounds against the structure of a Zaire Ebola viral protein (VP) 35 and a consensus scoring of both MCULE and CLCDDW docking programs remarked five compounds as potential hits. These compounds, with binding energies ranging from -7.9 to -8.9 kcal/mol, were assessed for predictions of their physicochemical and bioactivity properties, as well as absorption, distribution, metabolism, excretion, and toxicity (ADMET) criteria. The results of the 50 ns molecular dynamics simulations showed the presence of dynamic stability between ligand and protein complexes, and the structures remained significantly unchanged at the ligand-binding site throughout the simulation period. Both docking analysis and molecular dynamics simulation studies suggested strong binding affinity towards the receptor cavity and these selected compounds as potential inhibitors against the Zaire Ebola VP 35. With respect to inhibition constant values, bioavailability radar and other physicochemical properties, compound A (MCULE-1018045960-0-1) appeared to be the most promising hit compound. However, the ligand efficiency and ligand efficiency scale need improvement during optimization, and also validation via in vitro and in vivo studies are necessary to finally make a lead compound in treating Ebola virus diseases. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antivirales/uso terapéutico , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Sitios de Unión/efectos de los fármacos , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...