Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38659965

RESUMEN

Autism spectrum disorder (ASD) is characterized by a complex etiology, with genetic determinants significantly influencing its manifestation. Among these, the Scn2a gene emerges as a pivotal player, crucially involved in both glial and neuronal functionality. This study elucidates the underexplored roles of Scn2a in oligodendrocytes, and its subsequent impact on myelination and auditory neural processes. The results reveal a nuanced interplay between oligodendrocytes and axons, where Scn2a deletion causes alterations in the intricate process of myelination. This disruption, in turn, instigates changes in axonal properties and neuronal activities at the single cell level. Furthermore, oligodendrocyte-specific Scn2a deletion compromises the integrity of neural circuitry within auditory pathways, leading to auditory hypersensitivity-a common sensory abnormality observed in ASD. Through transcriptional profiling, we identified alterations in the expression of myelin-associated genes, highlighting the cellular consequences engendered by Scn2a deletion. In summary, the findings provide unprecedented insights into the pathway from Scn2a deletion in oligodendrocytes to sensory abnormalities in ASD, underscoring the integral role of Scn2a -mediated myelination in auditory responses. This research thereby provides novel insights into the intricate tapestry of genetic and cellular interactions inherent in ASD.

2.
Gut Microbes ; 15(2): 2283911, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010368

RESUMEN

The complex symbiotic relationship between the mammalian body and gut microbiome plays a critical role in the health outcomes of offspring later in life. The gut microbiome modulates virtually all physiological functions through direct or indirect interactions to maintain physiological homeostasis. Previous studies indicate a link between maternal/early-life gut microbiome, brain development, and behavioral outcomes relating to social cognition. Here we present direct evidence of the role of the gut microbiome in brain development. Through magnetic resonance imaging (MRI), we investigated the impact of the gut microbiome on brain organization and structure using germ-free (GF) mice and conventionalized mice, with the gut microbiome reintroduced after weaning. We found broad changes in brain volume in GF mice that persist despite the reintroduction of gut microbes at weaning. These data suggest a direct link between the maternal gut or early-postnatal microbe and their impact on brain developmental programming.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Encéfalo , Cabeza , Mamíferos
3.
Cell Rep ; 42(8): 112943, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37543947

RESUMEN

Oligodendrocytes are the sole myelin-producing cells in the central nervous system. Oligodendrocyte number is tightly controlled across diverse brain regions to match local axon type and number, yet the underlying mechanisms remain unclear. Here, we show that autophagy, an evolutionarily conserved cellular process that promotes cell survival under physiological conditions, elicits premyelinating oligodendrocyte apoptosis during development. Autophagy flux is increased in premyelinating oligodendrocytes, and its genetic blockage causes ectopic oligodendrocyte survival throughout the entire brain. Autophagy functions cell autonomously in the premyelinating oligodendrocyte to trigger cell apoptosis, and it genetically interacts with the TFEB pathway to limit oligodendrocyte number across diverse brain regions. Our results provide in vivo evidence showing that autophagy promotes apoptosis in mammalian cells under physiological conditions and reveal key intrinsic mechanisms governing oligodendrogenesis.


Asunto(s)
Vaina de Mielina , Oligodendroglía , Animales , Oligodendroglía/metabolismo , Vaina de Mielina/metabolismo , Axones , Apoptosis , Autofagia , Diferenciación Celular/fisiología , Mamíferos
4.
bioRxiv ; 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36712125

RESUMEN

Oligodendrocytes are the sole myelin producing cells in the central nervous system. Oligodendrocyte numbers are tightly controlled across diverse brain regions to match local axon type and number, but the underlying mechanisms and functional significance remain unclear. Here, we show that autophagy, an evolutionarily conserved cellular process that promotes cell survival under canonical settings, elicits premyelinating oligodendrocyte apoptosis during development and regulates critical aspects of nerve pulse propagation. Autophagy flux is increased in premyelinating oligodendrocytes, and its genetic blockage causes ectopic oligodendrocyte survival throughout the entire brain. Autophagy acts in the TFEB-Bax/Bak pathway and elevates PUMA mRNA levels to trigger premyelinating oligodendrocyte apoptosis cell-autonomously. Autophagy continuously functions in the myelinating oligodendrocytes to limit myelin sheath numbers and fine-tune nerve pulse propagation. Our results provide in vivo evidence showing that autophagy promotes apoptosis in mammalian cells under physiological conditions and reveal key intrinsic mechanisms governing oligodendrocyte number. HIGHLIGHTS: Autophagy flux increases in the premyelinating and myelinating oligodendrocytesAutophagy promotes premyelinating oligodendrocyte (pre-OL) apoptosis to control myelination location and timing Autophagy acts in the TFEB-PUMA-Bax/Bak pathway and elevates PUMA mRNA levels to determine pre-OL fate Autophagy continuously functions in the myelinating oligodendrocytes to limit myelin sheath thickness and finetune nerve pulse propagation.

6.
J Cereb Blood Flow Metab ; 42(9): 1616-1631, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35466772

RESUMEN

Functional network activity alterations are one of the earliest hallmarks of Alzheimer's disease (AD), detected prior to amyloidosis and tauopathy. Better understanding the neuronal underpinnings of such network alterations could offer mechanistic insight into AD progression. Here, we examined a mouse model (3xTgAD mice) recapitulating this early AD stage. We found resting functional connectivity loss within ventral networks, including the entorhinal cortex, aligning with the spatial distribution of tauopathy reported in humans. Unexpectedly, in contrast to decreased connectivity at rest, 3xTgAD mice show enhanced fMRI signal within several projection areas following optogenetic activation of the entorhinal cortex. We corroborate this finding by demonstrating neuronal facilitation within ventral networks and synaptic hyperexcitability in projection targets. 3xTgAD mice, thus, reveal a dichotomic hypo-connected:resting versus hyper-responsive:active phenotype. This strong homotopy between the areas affected supports the translatability of this pathophysiological model to tau-related, early-AD deficits in humans.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Corteza Entorrinal , Humanos , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Tauopatías/diagnóstico por imagen , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
7.
Brain Pathol ; 32(5): e13064, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35285112

RESUMEN

Ermin is an actin-binding protein found almost exclusively in the central nervous system (CNS) as a component of myelin sheaths. Although Ermin has been predicted to play a role in the formation and stability of myelin sheaths, this has not been directly examined in vivo. Here, we show that Ermin is essential for myelin sheath integrity and normal saltatory conduction. Loss of Ermin in mice caused de-compacted and fragmented myelin sheaths and led to slower conduction along with progressive neurological deficits. RNA sequencing of the corpus callosum, the largest white matter structure in the CNS, pointed to inflammatory activation in aged Ermin-deficient mice, which was corroborated by increased levels of microgliosis and astrogliosis. The inflammatory milieu and myelin abnormalities were further associated with increased susceptibility to immune-mediated demyelination insult in Ermin knockout mice. Supporting a possible role of Ermin deficiency in inflammatory white matter disorders, a rare inactivating mutation in the ERMN gene was identified in multiple sclerosis patients. Our findings demonstrate a critical role for Ermin in maintaining myelin integrity. Given its near-exclusive expression in myelinating oligodendrocytes, Ermin deficiency represents a compelling "inside-out" model of inflammatory dysmyelination and may offer a new paradigm for the development of myelin stability-targeted therapies.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Animales , Sistema Nervioso Central/metabolismo , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Ratones , Esclerosis Múltiple/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo
8.
Geroscience ; 44(4): 2171-2194, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35357643

RESUMEN

Intermittent fasting (IF) remains the most effective intervention to achieve robust anti-aging effects and attenuation of age-related diseases in various species. Epigenetic modifications mediate the biological effects of several environmental factors on gene expression; however, no information is available on the effects of IF on the epigenome. Here, we first found that IF for 3 months caused modulation of H3K9 trimethylation (H3K9me3) in the cerebellum, which in turn orchestrated a plethora of transcriptomic changes involved in robust metabolic switching processes commonly observed during IF. Second, a portion of both the epigenomic and transcriptomic modulations induced by IF was remarkably preserved for at least 3 months post-IF refeeding, indicating that memory of IF-induced epigenetic changes was maintained. Notably, though, we found that termination of IF resulted in a loss of H3K9me3 regulation of the transcriptome. Collectively, our study characterizes the novel effects of IF on the epigenetic-transcriptomic axis, which controls myriad metabolic processes. The comprehensive analyses undertaken in this study reveal a molecular framework for understanding how IF impacts the metabolo-epigenetic axis of the brain and will serve as a valuable resource for future research.


Asunto(s)
Epigenómica , Transcriptoma , Ayuno , Perfilación de la Expresión Génica , Encéfalo
9.
Pharmacol Ther ; 235: 108122, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35114285

RESUMEN

Amyloid precursor protein (APP) is an evolutionarily conserved transmembrane protein and a well-characterized precursor protein of amyloid-beta (Aß) peptides, which accumulate in the brains of individuals with Alzheimer's disease (AD)-related pathologies. Aß has been extensively investigated since the amyloid hypothesis in AD was proposed. Besides Aß, previous studies on APP and its proteolytic cleavage products have suggested their diverse pathological and physiological functions. However, their roles still have not been thoroughly understood. In this review, we extensively discuss the evolutionarily-conserved biology of APP, including its structure and processing pathway, as well as recent findings on the physiological roles of APP and its fragments in the central nervous system and peripheral nervous system. We have also elaborated upon the current status of APP-targeted therapeutic approaches for AD treatment by discussing inhibitors of several proteases participating in APP processing, including α-, ß-, and γ-secretases. Finally, we have highlighted the future perspectives pertaining to further research and the potential clinical role of APP.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Amiloide , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Humanos
10.
J Extracell Vesicles ; 11(1): e12179, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34982509

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry is mediated by the interaction of the viral spike (S) protein with angiotensin-converting enzyme 2 (ACE2) on the host cell surface. Although a clinical trial testing soluble ACE2 (sACE2) for COVID-19 is currently ongoing, our understanding of the delivery of sACE2 via small extracellular vesicles (sEVs) is still rudimentary. With excellent biocompatibility allowing for the effective delivery of molecular cargos, sEVs are broadly studied as nanoscale protein carriers. In order to exploit the potential of sEVs, we design truncated CD9 scaffolds to display sACE2 on the sEV surface as a decoy receptor for the S protein of SARS-CoV-2. Moreover, to enhance the sACE2-S binding interaction, we employ sACE2 variants. sACE2-loaded sEVs exhibit typical sEVs characteristics and bind to the S protein. Furthermore, engineered sEVs inhibit the entry of wild-type (WT), the globally dominant D614G variant, Beta (K417N-E484K-N501Y) variant, and Delta (L452R-T478K-D614G) variant SARS-CoV-2 pseudovirus, and protect against authentic SARS-CoV-2 and Delta variant infection. Of note, sACE2 variants harbouring sEVs show superior antiviral efficacy than WT sACE2 loaded sEVs. Therapeutic efficacy of the engineered sEVs against SARS-CoV-2 challenge was confirmed using K18-hACE2 mice. The current findings provide opportunities for the development of new sEVs-based antiviral therapeutics.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , COVID-19/inmunología , Vesículas Extracelulares/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Femenino , Células HEK293 , Humanos , Ratones , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
11.
J Lipid Res ; 63(1): 100147, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34752805

RESUMEN

The myelin sheath, which is wrapped around axons, is a lipid-enriched structure produced by mature oligodendrocytes. Disruption of the myelin sheath is observed in several neurological diseases, such as multiple sclerosis. A crucial component of myelin is sphingomyelin, levels of which can be increased by ABCA8, a member of the ATP-binding cassette transporter family. ABCA8 is highly expressed in the cerebellum, specifically in oligodendroglia. However, whether ABCA8 plays a role in myelination and mechanisms that would underlie this role remain unknown. Here, we found that the absence of Abca8b, a mouse ortholog of ABCA8, led to decreased numbers of cerebellar oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes in mice. We show that in oligodendrocytes, ABCA8 interacts with chondroitin sulfate proteoglycan 4 (CSPG4), a molecule essential for OPC proliferation, migration, and myelination. In the absence of Abca8b, localization of CSPG4 to the plasma membrane was decreased, contributing to reduced cerebellar CSPG4 expression. Cerebellar CSPG4+ OPCs were also diminished, leading to decreased mature myelinating oligodendrocyte numbers and cerebellar myelination levels in Abca8b-/- mice. In addition, electron microscopy analyses showed that the number of nonmyelinated cerebellar axons was increased, whereas cerebellar myelin thickness (g-ratio), myelin sheath periodicity, and axonal diameter were all decreased, indicative of disordered myelin ultrastructure. In line with disrupted cerebellar myelination, Abca8b-/- mice showed lower cerebellar conduction velocity and disturbed locomotion. In summary, ABCA8 modulates cerebellar myelination, in part through functional regulation of the ABCA8-interacting protein CSPG4. Our findings suggest that ABCA8 disruption may contribute to the pathophysiology of myelin disorders.


Asunto(s)
Células Precursoras de Oligodendrocitos
12.
Theranostics ; 11(18): 8855-8873, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522215

RESUMEN

Mitochondrial dysfunction and oxidative stress are frequently observed in the early stages of Alzheimer's disease (AD). Studies have shown that presenilin-1 (PS1), the catalytic subunit of γ-secretase whose mutation is linked to familial AD (FAD), localizes to the mitochondrial membrane and regulates its homeostasis. Thus, we investigated how five PS1 mutations (A431E, E280A, H163R, M146V, and Δexon9) observed in FAD affect mitochondrial functions. Methods: We used H4 glioblastoma cell lines genetically engineered to inducibly express either the wild-type PS1 or one of the five PS1 mutants in order to examine mitochondrial morphology, dynamics, membrane potential, ATP production, mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), oxidative stress, and bioenergetics. Furthermore, we used brains of PS1M146V knock-in mice, 3xTg-AD mice, and human AD patients in order to investigate the role of PS1 in regulating MAMs formation. Results: Each PS1 mutant exhibited slightly different mitochondrial dysfunction. Δexon9 mutant induced mitochondrial fragmentation while A431E, E280A, H163R, and M146V mutants increased MAMs formation. A431E, E280A, M146V, and Δexon9 mutants also induced mitochondrial ROS production. A431E mutant impaired both complex I and peroxidase activity while M146V mutant only impaired peroxidase activity. All PS1 mutants compromised mitochondrial membrane potential and cellular ATP levels were reduced by A431E, M146V, and Δexon9 mutants. Through comparative profiling of hippocampal gene expression in PS1M146V knock-in mice, we found that PS1M146V upregulates Atlastin 2 (ATL2) expression level, which increases ER-mitochondria contacts. Down-regulation of ATL2 after PS1 mutant induction rescued abnormally elevated ER-mitochondria interactions back to the normal level. Moreover, ATL2 expression levels were significantly elevated in the brains of 3xTg-AD mice and AD patients. Conclusions: Overall, our findings suggest that each of the five FAD-linked PS1 mutations has a deleterious effect on mitochondrial functions in a variety of ways. The adverse effects of PS1 mutations on mitochondria may contribute to MAMs formation and oxidative stress resulting in an accelerated age of disease onset in people harboring mutant PS1.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Mitocondrias/fisiología , Presenilina-1/genética , Adenosina Trifosfato/metabolismo , Enfermedad de Alzheimer/genética , Animales , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Técnicas de Sustitución del Gen/métodos , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Estrés Oxidativo/fisiología , Presenilina-1/metabolismo
13.
Life (Basel) ; 11(7)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34357070

RESUMEN

The central nervous system was classically perceived as anatomically and functionally independent from the other visceral organs. But in recent decades, compelling evidence has led the scientific community to place a greater emphasis on the role of gut microbes on the brain. Pathological observations and early gastrointestinal symptoms highlighted that gut dysbiosis likely precedes the onset of cognitive deficits in Alzheimer's disease (AD) and Parkinson's disease (PD) patients. The delicate balance in the number and functions of pathogenic microbes and alternative probiotic populations is critical in the modulation of systemic inflammation and neuronal health. However, there is limited success in restoring healthy microbial biodiversity in AD and PD patients with general probiotics interventions and fecal microbial therapies. Fortunately, the gut microflora is susceptible to long-term extrinsic influences such as lifestyle and dietary choices, providing opportunities for treatment through comparatively individual-specific control of human behavior. In this review, we examine the impact of restrictive diets on the gut microbiome populations associated with AD and PD. The overall evidence presented supports that gut dysbiosis is a plausible prelude to disease onset, and early dietary interventions are likely beneficial for the prevention and treatment of progressive neurodegenerative diseases.

15.
Sci Adv ; 6(31)2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32937583

RESUMEN

ELKS1 is a protein with proposed roles in regulated exocytosis in neurons and nuclear factor κB (NF-κB) signaling in cancer cells. However, how these two potential roles come together under physiological settings remain unknown. Since both regulated exocytosis and NF-κB signaling are determinants of mast cell (MC) functions, we generated mice lacking ELKS1 in connective tissue MCs (Elks1f/f Mcpt5-Cre) and found that while ELKS1 is dispensable for NF-κB-mediated cytokine production, it is essential for MC degranulation both in vivo and in vitro. Impaired degranulation was caused by reduced transcription of Syntaxin 4 (STX4) and Syntaxin binding protein 2 (Stxpb2), resulting from a lack of ELKS1-mediated stabilization of lysine-specific demethylase 2B (Kdm2b), which is an essential regulator of STX4 and Stxbp2 transcription. These results suggest a transcriptional role for active-zone proteins like ELKS1 and suggest that they may regulate exocytosis through a novel mechanism involving transcription of key exocytosis proteins.


Asunto(s)
Degranulación de la Célula , FN-kappa B , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Degranulación de la Célula/genética , Proteínas F-Box , Histona Demetilasas con Dominio de Jumonji , Mastocitos/metabolismo , Ratones , Proteínas Munc18/metabolismo , FN-kappa B/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Transducción de Señal
16.
Arch Pharm Res ; 43(9): 920-931, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32975736

RESUMEN

The central nervous system is simply divided into two distinct anatomical regions based on the color of tissues, i.e. the gray and white matter. The gray matter is composed of neuronal cell bodies, glial cells, dendrites, immune cells, and the vascular system, while the white matter is composed of concentrated myelinated axonal fibers extending from neuronal soma and glial cells, such as oligodendrocyte precursor cells (OPCs), oligodendrocytes, astrocytes, and microglia. As neuronal cell bodies are located in the gray matter, great attention has been focused mainly on the gray matter regarding the understanding of the functions of the brain throughout the neurophysiological areas, leading to a scenario in which the function of the white matter is relatively underestimated or has not received much attention. However, increasing evidence shows that the white matter plays highly significant and pivotal functions in the brain based on the fact that its abnormalities are associated with numerous neurological diseases. In this review, we will broadly discuss the pathways and functions of myelination, which is one of the main processes that modulate the functions of the white matter, as well as the manner in which its abnormalities are related to neurological disorders.


Asunto(s)
Vaina de Mielina/patología , Enfermedades del Sistema Nervioso/patología , Sustancia Blanca/patología , Animales , Astrocitos/patología , Astrocitos/fisiología , Axones/patología , Axones/fisiología , Diferenciación Celular , Modelos Animales de Enfermedad , Humanos , Microglía/patología , Microglía/fisiología , Vaina de Mielina/fisiología , Conducción Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Células Precursoras de Oligodendrocitos/patología , Células Precursoras de Oligodendrocitos/fisiología , Oligodendroglía/patología , Oligodendroglía/fisiología , Sustancia Blanca/citología
17.
Biol Psychiatry ; 88(6): 500-511, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32653109

RESUMEN

BACKGROUND: Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by epigenetic silencing of FMR1 and loss of FMRP expression. Efforts to understand the molecular underpinnings of the disease have been largely performed in rodent or nonisogenic settings. A detailed examination of the impact of FMRP loss on cellular processes and neuronal properties in the context of isogenic human neurons remains lacking. METHODS: Using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 to introduce indels in exon 3 of FMR1, we generated an isogenic human pluripotent stem cell model of FXS that shows complete loss of FMRP expression. We generated neuronal cultures and performed genome-wide transcriptome and proteome profiling followed by functional validation of key dysregulated processes. We further analyzed neurodevelopmental and neuronal properties, including neurite length and neuronal activity, using multielectrode arrays and patch clamp electrophysiology. RESULTS: We showed that the transcriptome and proteome profiles of isogenic FMRP-deficient neurons demonstrate perturbations in synaptic transmission, neuron differentiation, cell proliferation and ion transmembrane transporter activity pathways, and autism spectrum disorder-associated gene sets. We uncovered key deficits in FMRP-deficient cells demonstrating abnormal neural rosette formation and neural progenitor cell proliferation. We further showed that FMRP-deficient neurons exhibit a number of additional phenotypic abnormalities, including neurite outgrowth and branching deficits and impaired electrophysiological network activity. These FMRP-deficient related impairments have also been validated in additional FXS patient-derived human-induced pluripotent stem cell neural cells. CONCLUSIONS: Using isogenic human pluripotent stem cells as a model to investigate the pathophysiology of FXS in human neurons, we reveal key neural abnormalities arising from the loss of FMRP.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Células Madre Pluripotentes Inducidas , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Humanos , Neuronas
18.
Genes Genomics ; 42(2): 165-178, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31797315

RESUMEN

BACKGROUND: The Korean Peninsula is a small but unique area showing great endemic Hynobius diversity with H. quelpaertensis, H. yangi, H. unisacculus and three species candidates (HC1, HC3 and HC4). H. quelpaertensis is distributed in the southern part and in Jeju Island, while the remaining species have extremely narrow distributions. OBJECTIVES: To examine the genetic structure of H. quelpaertensis and the phylogenetic placement in Hynobius. METHODS: Three mitochondrial and six microsatellite loci were genotyped for 204 Hynobius quelpaertensis, three H. leechii, three H. yangi, three HC1, two H. unisacculus, three HC3, three HC4 and ten Japanses H. lichenatus. RESULTS: A high level of mitochondrial diversity was found in H. quelpaertensis. Our mitochondrial data showed evidence of a historical link between inland and Jeju Island despite the signature of founder effect likely experienced by the early island populations. However, our microsatellite analysis showed the fairly clear signature of isolation history between in- and island populations. Upon phylogenetic analysis, H. quelpaertensis, H. unisacculus and HC1 formed a cluster, whereas H. yangi belonged to a separate cluster. HC3 and HC4 were clustered with either H. quelpaertensis or H. yangi depending on the locus used. CONCLUSION: Our results show at least partially the historical imprints engraved by dispersal of Korean endemic Hynobius during Pleistocene, potentially providing a fundamental basis in determining the conservation units and finding management strategies for these species.


Asunto(s)
Especies en Peligro de Extinción , Urodelos/genética , Animales , Variación Genética , Repeticiones de Microsatélite , Mitocondrias/genética , Filogenia , República de Corea , Urodelos/clasificación
19.
Proc Natl Acad Sci U S A ; 116(19): 9622-9627, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31015293

RESUMEN

White matter abnormalities are a nearly universal pathological feature of neurodegenerative disorders including Huntington disease (HD). A long-held assumption is that this white matter pathology is simply a secondary outcome of the progressive neuronal loss that manifests with advancing disease. Using a mouse model of HD, here we show that white matter and myelination abnormalities are an early disease feature appearing before the manifestation of any behavioral abnormalities or neuronal loss. We further show that selective inactivation of mutant huntingtin (mHTT) in the NG2+ oligodendrocyte progenitor cell population prevented myelin abnormalities and certain behavioral deficits in HD mice. Strikingly, the improvements in behavioral outcomes were seen despite the continued expression of mHTT in nonoligodendroglial cells including neurons, astrocytes, and microglia. Using RNA-seq and ChIP-seq analyses, we implicate a pathogenic mechanism that involves enhancement of polycomb repressive complex 2 (PRC2) activity by mHTT in the intrinsic oligodendroglial dysfunction and myelination deficits observed in HD. Our findings challenge the long-held dogma regarding the etiology of white matter pathology in HD and highlight the contribution of epigenetic mechanisms to the observed intrinsic oligodendroglial dysfunction. Our results further suggest that ameliorating white matter pathology and oligodendroglial dysfunction may be beneficial for HD.


Asunto(s)
Conducta Animal , Enfermedades Desmielinizantes , Proteína Huntingtina , Enfermedad de Huntington , Mutación , Oligodendroglía , Animales , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Ratones Mutantes , Oligodendroglía/metabolismo , Oligodendroglía/patología , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
20.
Sci Rep ; 8(1): 10629, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30006507

RESUMEN

Separated river systems could create confluences via two geological processes, estuary coalescence in response to decreasing sea levels and headwater capture, allowing primary freshwater species to disperse across rivers. Squalidus multimaculatus, is an endemic and primary freshwater species restricted to the southeast coast of the Korean Peninsula. The distribution of this species is unique, given that other congeneric species, including its closely related S. gracilis majimae, as well as other cyprind species are observed throughout the peninsula except for the east coast. Phylogeographic analyses were conducted using three mitochondrial loci to identify the origin of S. multimaculatus and the historical pathways of dispersal. A strong phylogenetic affinity between S. multimaculatus and S. g. majimae and the genetic structure among populations indicated that S. multimaculatus originated from the eastward colonization of the common ancestor between S. g. majimae and S. multimaculatus via headwater capture through fault zones within successive mountain range. Following colonization, the ancestral S. multimaculatus likely migrated towards north via estuary coalescence along a well-developed continental shelf. Our study was the first empirical attempt providing insights into how freshwater organisms dispersed to the southernmost tip of East Asia, despite the potential loss of such historical imprints with anthropogenic interference.


Asunto(s)
Distribución Animal , Cyprinidae/genética , ADN Mitocondrial/genética , Genética de Población , Filogeografía/métodos , Animales , Estuarios , Asia Oriental , Filogenia , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA