Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(6): e17352, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37426801

RESUMEN

Objectives: Polystyrene is a plastic that leads to environmental pollution. In particular, expanded polystyrene is very light and takes up much space, causing additional environmental problems. The aim of this study was to isolate new symbiotic bacteria which degraded polystyrene from mealworms. Methods: The population of polystyrene degrading bacteria was increased by enrichment culture of intestinal bacteria from mealworms with polystyrene as a sole carbon source. The degradation activity of isolated bacteria was evaluated by morphological change of micro-polystyrene particles and the surface change of polystyrene films. Results: Eight isolated species (Acinetobacter septicus, Agrobacterium tumefaciens, Klebsiella grimontii, Pseudomonas multiresinivorans, Pseudomonas nitroreducens, Pseudomonas plecoglossicida, Serratia marcescens, and Yokenella regensburgei) were identified that degrade polystyrene. Conclusion: Bacterial identification shows that a broad spectrum of bacteria decomposing polystyrene coexists in the intestinal tract of mealworms.

2.
J Vis Exp ; (196)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37427958

RESUMEN

Simultaneous electroencephalogram and functional magnetic resonance imaging (EEG-fMRI) is a unique combined technique that provides synergy in the understanding and localization of seizure onset in epilepsy. However, reported experimental protocols for EEG-fMRI recordings fail to address details about conducting such procedures on epilepsy patients. In addition, these protocols are limited solely to research settings. To fill the gap between patient monitoring in an epilepsy monitoring unit (EMU) and conducting research with an epilepsy patient, we introduce a unique EEG-fMRI recording protocol of epilepsy during the interictal period. The use of an MR conditional electrode set, which can also be used in the EMU for a simultaneous scalp EEG and video recording, allows an easy transition of EEG recordings from the EMU to the scanning room for concurrent EEG-fMRI recordings. Details on the recording procedures using this specific MR conditional electrode set are provided. In addition, the study explains step-by-step EEG processing procedures to remove the imaging artifacts, which can then be used for clinical review. This experimental protocol promotes an amendment to the conventional EEG-fMRI recording for enhanced applicability in both clinical (i.e., EMU) and research settings. Furthermore, this protocol provides the potential to expand this modality to postictal EEG-fMRI recordings in the clinical setting.


Asunto(s)
Artefactos , Epilepsia , Humanos , Epilepsia/diagnóstico por imagen , Electroencefalografía/métodos , Imagen por Resonancia Magnética/métodos , Monitoreo Fisiológico
3.
Front Psychol ; 14: 1113196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138996

RESUMEN

Fostering scientific literacy has become an increasingly salient goal as evidence accumulates regarding the early emergence of foundational skills and knowledge in this domain, as well as their relation to long-term success and engagement. Despite the potential that the home context has for nurturing early scientific literacy, research specifying its role has been limited. In this longitudinal study, we examined associations between children's early science-related experiences at home and their subsequent scientific literacy. Following on our previous work, we specifically considered parent causal-explanatory talk, as well as the degree to which parents facilitate access to science-related materials and experiences. A group of 153 children from diverse backgrounds were evaluated across 5 annual waves of data collection from preschool entry (M age = 3.41) through first grade (M age = 7.92). Results demonstrate that parent invitations for children to explain causal phenomena had strong concurrent relations to scientific literacy but showed little relation to subsequent literacy. In contrast, the broader home science environment at preschool entry, particularly in the form of exposure to science-related activities, predicted scientific literacy over the next 4 years. The directionality and specificity of these relations were clarified through the inclusion of measures of cognitive and broader home experiences as controls in regression analyses. Overall, our investigation revealed that exposure to science-related input provided by parents has particularly powerful potential for shaping scientific literacy when children are very young. Implications for parent-focused interventions that promote science literacy are discussed.

4.
J Neural Eng ; 19(5)2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36198278

RESUMEN

Objective. Despite the tremendous promise of invasive brain-computer interfaces (iBCIs), the associated study costs, risks, and ethical considerations limit the opportunity to develop and test the algorithms that decode neural activity into a user's intentions. Our goal was to address this challenge by designing an iBCI model capable of testing many human subjects in closed-loop.Approach. We developed an iBCI model that uses artificial neural networks (ANNs) to translate human finger movements into realistic motor cortex firing patterns, which can then be decoded in real time. We call the model the joint angle BCI, or jaBCI. jaBCI allows readily recruited, healthy subjects to perform closed-loop iBCI tasks using any neural decoder, preserving subjects' control-relevant short-latency error correction and learning dynamics.Main results. We validated jaBCI offline through emulated neuron firing statistics, confirming that emulated neural signals have firing rates, low-dimensional PCA geometry, and rotational jPCA dynamics that are quite similar to the actual neurons (recorded in monkey M1) on which we trained the ANN. We also tested jaBCI in closed-loop experiments, our single study examining roughly as many subjects as have been tested world-wide with iBCIs (n= 25). Performance was consistent with that of the paralyzed, human iBCI users with implanted intracortical electrodes. jaBCI allowed us to imitate the experimental protocols (e.g. the same velocity Kalman filter decoder and center-out task) and compute the same seven behavioral measures used in three critical studies.Significance. These encouraging results suggest the jaBCI's real-time firing rate emulation is a useful means to provide statistically robust sample sizes for rapid prototyping and optimization of decoding algorithms, the study of bi-directional learning in iBCIs, and improving iBCI control.


Asunto(s)
Interfaces Cerebro-Computador , Corteza Motora , Algoritmos , Electrodos Implantados , Humanos , Corteza Motora/fisiología , Movimiento
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3327-3333, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086236

RESUMEN

Kernel temporal differences (KTD) (λ) algorithm integrated in Q-learning (Q-KTD) has shown its applicability and feasibility for reinforcement learning brain machine interfaces (RLBMIs). RLBMI with its unique learning strategy based on trial-error allows continuous learning and adaptation in BMIs. Q-KTD has shown good performance in both open and closed-loop experiments for finding a proper mapping from neural intention to control commands of an external device. However, previous studies have been limited to intracortical BMIs where monkey's firing rates from primary motor cortex were used as inputs to the neural decoder. This study provides the first attempt to investigate Q-KTD algorithm's applicability in EEG-based RLBMIs. Two different publicly available EEG data sets are considered, we refer to them as Data set A and Data set B. EEG motor imagery tasks are integrated in a single step center-out reaching task, and we observe the open-loop RLBMI experiments reach 100% average success rates after sufficient learning experience. Data set A converges after approximately 20 epochs for raw features and Data set B shows convergence after approximately 40 epochs for both raw and Fourier transform features. Although there still exist challenges to overcome in EEG-based RLBMI using Q-KTD, including increasing the learning speed, and optimization of a continuously growing number of kernel units, the results encourage further investigation of Q-KTD in closed-loop RLBMIs using EEG. Clinical Relevance- This study supports feasibility of noninvasive EEG-based RLBMI implementations and addresses benefits and challenges of RLBMI using EEG.


Asunto(s)
Interfaces Cerebro-Computador , Algoritmos , Electroencefalografía/métodos , Aprendizaje , Refuerzo en Psicología
6.
Front Syst Neurosci ; 16: 836778, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090185

RESUMEN

Creating flexible and robust brain machine interfaces (BMIs) is currently a popular topic of research that has been explored for decades in medicine, engineering, commercial, and machine-learning communities. In particular, the use of techniques using reinforcement learning (RL) has demonstrated impressive results but is under-represented in the BMI community. To shine more light on this promising relationship, this article aims to provide an exhaustive review of RL's applications to BMIs. Our primary focus in this review is to provide a technical summary of various algorithms used in RL-based BMIs to decode neural intention, without emphasizing preprocessing techniques on the neural signals and reward modeling for RL. We first organize the literature based on the type of RL methods used for neural decoding, and then each algorithm's learning strategy is explained along with its application in BMIs. A comparative analysis highlighting the similarities and uniqueness among neural decoders is provided. Finally, we end this review with a discussion about the current stage of RLBMIs including their limitations and promising directions for future research.

7.
Front Hum Neurosci ; 16: 902183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845246

RESUMEN

Decoding movement related intentions is a key step to implement BMIs. Decoding EEG has been challenging due to its low spatial resolution and signal to noise ratio. Metric learning allows finding a representation of data in a way that captures a desired notion of similarity between data points. In this study, we investigate how metric learning can help finding a representation of the data to efficiently classify EEG movement and pre-movement intentions. We evaluate the effectiveness of the obtained representation by comparing classification the performance of a Support Vector Machine (SVM) as a classifier when trained on the original representation, called Euclidean, and representations obtained with three different metric learning algorithms, including Conditional Entropy Metric Learning (CEML), Neighborhood Component Analysis (NCA), and the Entropy Gap Metric Learning (EGML) algorithms. We examine different types of features, such as time and frequency components, which input to the metric learning algorithm, and both linear and non-linear SVM are applied to compare the classification accuracies on a publicly available EEG data set for two subjects (Subject B and C). Although metric learning algorithms do not increase the classification accuracies, their interpretability using an importance measure we define here, helps understanding data organization and how much each EEG channel contributes to the classification. In addition, among the metric learning algorithms we investigated, EGML shows the most robust performance due to its ability to compensate for differences in scale and correlations among variables. Furthermore, from the observed variations of the importance maps on the scalp and the classification accuracy, selecting an appropriate feature such as clipping the frequency range has a significant effect on the outcome of metric learning and subsequent classification. In our case, reducing the range of the frequency components to 0-5 Hz shows the best interpretability in both Subject B and C and classification accuracy for Subject C. Our experiments support potential benefits of using metric learning algorithms by providing visual explanation of the data projections that explain the inter class separations, using importance. This visualizes the contribution of features that can be related to brain function.

8.
Int Forum Allergy Rhinol ; 11(12): 1637-1646, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34148298

RESUMEN

BACKGROUND: Discrimination of nasal cavity mass lesions is a challenging work requiring extensive experience. A deep learning-based automated diagnostic system may help clinicians to classify nasal cavity mass lesions. We demonstrated the feasibility of a convolutional neural network (CNN)-based diagnosis system for automatic detection and classification of nasal polyps (NP) and inverted papillomas (IP). METHODS: We developed a CNN-based algorithm using a transfer learning strategy and trained it on nasal endoscopic images. A total of 99 nasal endoscopic images with normal findings, 98 images with NP, and 100 images with IP were analyzed using the developed CNN. Six otolaryngologists participated in clinical visual assessment. Image-based classification performance was measured by calculating the accuracy and area under the receiver operating characteristic curve (AUC). The diagnostic performance was compared between the CNN and clinical visual assessment by human experts. RESULTS: The algorithm achieved an overall accuracy of 0.742 ± 0.058 with the following class accuracies: normal, 0.81± 0.14; IP, 0.57 ± 0.07; and NP, 0.83 ± 0.21. The AUC values for normal, IP, and NP were 0.91 ± 0.06, 0.82 ± 0.09, and 0.84 ± 0.06, respectively. The overall accuracy of the CNN model was comparable with the average performance of human experts (0.742 vs. 0.749; p = 0.11). CONCLUSIONS: The trained CNN model appears to reliably classify NP and IP of the nasal cavity from nasal endoscopic images; it also yields a reliable reference for diagnosing nasal cavity mass lesions during nasal endoscopy. However, further studies with more test data are warranted to improve the diagnostic accuracy of our CNN model.


Asunto(s)
Aprendizaje Profundo , Pólipos Nasales , Papiloma Invertido , Algoritmos , Endoscopía , Estudios de Factibilidad , Humanos , Cavidad Nasal/diagnóstico por imagen , Pólipos Nasales/diagnóstico por imagen , Papiloma Invertido/diagnóstico por imagen
9.
Indian J Microbiol ; 61(2): 130-136, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33927454

RESUMEN

Expanded polystyrene (EPS), which is difficult to decompose, is usually buried or incinerated, causing the natural environment to be contaminated with microplastics and environmental hormones. Digestion of EPS by mealworms has been identified as a possible biological solution to the problem of pollution, but the complete degradation mechanism of EPS is not yet known. Intestinal microorganisms play a significant role in the degradation of EPS by mealworms, and relatively few other EPS degradation microorganisms are currently known. This study observed significant differences in the intestinal microbiota of mealworms according to the dietary results of metagenomics analysis and biodiversity indices. We have proposed two new candidates of EPS-degrading bacteria, Cronobacter sakazakii and Lactococcus garvieae, which increased significantly in the EPS feeding group population. The population change and the new two bacteria will help us understand the biological mechanism of EPS degradation and develop practical EPS degradation methods.

10.
Brain Topogr ; 32(4): 599-624, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-27026168

RESUMEN

The curtain of technical limitations impeding rat multichannel non-invasive electroencephalography (EEG) has risen. Given the importance of this preclinical model, development and validation of EEG source imaging (ESI) is essential. We investigate the validity of well-known human ESI methodologies in rats which individual tissue geometries have been approximated by those extracted from an MRI template, leading also to imprecision in electrode localizations. With the half and fifth sensitivity volumes we determine both the theoretical minimum electrode separation for non-redundant scalp EEG measurements and the electrode sensitivity resolution, which vary over the scalp because of the head geometry. According to our results, electrodes should be at least ~3 to 3.5 mm apart for an optimal configuration. The sensitivity resolution is generally worse for electrodes at the boundaries of the scalp measured region, though, by analogy with human montages, concentrates the sensitivity enough to localize sources. Cramér-Rao lower bounds of source localization errors indicate it is theoretically possible to achieve ESI accuracy at the level of anatomical structures, such as the stimulus-specific somatosensory areas, using the template. More validation for this approximation is provided through the comparison between the template and the individual lead field matrices, for several rats. Finally, using well-accepted inverse methods, we demonstrate that somatosensory ESI is not only expected but also allows exploring unknown phenomena related to global sensory integration. Inheriting the advantages and pitfalls of human ESI, rat ESI will boost the understanding of brain pathophysiological mechanisms and the evaluation of ESI methodologies, new pharmacological treatments and ESI-based biomarkers.


Asunto(s)
Mapeo Encefálico/métodos , Electroencefalografía/métodos , Animales , Encéfalo/fisiología , Encefalopatías , Electrodos , Humanos , Imagen por Resonancia Magnética , Masculino , Ratas , Cuero Cabelludo
11.
Front Cell Neurosci ; 12: 52, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867355

RESUMEN

Current clinical practice in focal epilepsy involves brain source imaging (BSI) to localize brain areas where from interictal epileptiform discharges (IEDs) emerge. These areas, named irritative zones, have been useful to define candidate seizures-onset zones during pre-surgical workup. Since human histological data are mostly available from final resected zones, systematic studies characterizing pathophysiological mechanisms and abnormal molecular/cellular substrates in irritative zones-independent of them being epileptogenic-are challenging. Combining BSI and histological analysis from all types of irritative zones is only possible through the use of preclinical animal models. Here, we recorded 32-channel spontaneous electroencephalographic data from rats that have focal cortical dysplasia (FCD) and chronic seizures. BSI for different IED subtypes was performed using the methodology presented in Bae et al. (2015). Post-mortem brain sections containing irritative zones were stained to quantify anatomical, functional, and inflammatory biomarkers specific for epileptogenesis, and the results were compared with those obtained using the contralateral healthy brain tissue. We found abnormal anatomical structures in all irritative zones (i.e., larger neuronal processes, glioreactivity, and vascular cuffing) and larger expressions for neurotransmission (i.e., NR2B) and inflammation (i.e., ILß1, TNFα and HMGB1). We conclude that irritative zones in this rat preclinical model of FCD comprise abnormal tissues disregarding whether they are actually involved in icto-genesis or not. We hypothesize that seizure perpetuation happens gradually; hence, our results could support the use of IED-based BSI for the early diagnosis and preventive treatment of potential epileptic foci. Further verifications in humans are yet needed.

12.
J Neurotrauma ; 34(9): 1778-1786, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27203696

RESUMEN

We recently demonstrated that the electrical perceptual threshold (EPT) examination reveals spared sensory function at lower spinal segments compared with the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) examination in humans with chronic incomplete cervical spinal cord injury (SCI). Here, we investigated whether discrepancies in sensory function detected by both sensory examinations change over time after SCI. Forty-five participants with acute (<1 year), chronic (≥1-10 years), and extended-chronic (>10 years) incomplete cervical SCI and 30 control subjects were tested on dermatomes C2-T4 bilaterally. EPT values were higher in subjects with acute (2.5 ± 0.8 mA), chronic (2.2 ± 0.7 mA), or extended-chronic (2.8 ± 1.1 mA) SCI compared with controls (1.0 ± 0.1 mA). The EPT examination detected sensory impairments in spinal segments above (2.3 ± 0.9) and below (4.2 ± 2.6) the level detected by the ISNCSCI sensory examination in participants with acute and chronic SCI, respectively. Notably, both examinations detected similar levels of spared sensory function in the extended-chronic phase of SCI (0.8 ± 0.5). A negative correlation was found between differences in EPT and ISNCSCI sensory levels and time post-injury. These observations indicate that discrepancies between EPT and ISNCSCI sensory scores are time-dependent, with the EPT revealing impaired sensory function above, below, or at the same spinal segment as the ISNCSCI examination. We propose that the EPT is a sensitive tool to assess changes in sensory function over time after incomplete cervical SCI.


Asunto(s)
Sensación , Traumatismos de la Médula Espinal/fisiopatología , Enfermedad Aguda , Adulto , Anciano , Enfermedad Crónica , Evaluación de la Discapacidad , Estimulación Eléctrica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Umbral Sensorial , Adulto Joven
13.
IEEE Trans Biomed Eng ; 63(1): 97-110, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26241965

RESUMEN

GOAL: We aim to evaluate the mechanisms underlying the neurovascular/metabolic coupling in the epileptogenic cortices of rats with chronic focal epilepsy. METHODS: We performed and analyzed intracranial recordings obtained from the seizure-onset zones during ictal periods on epileptic rats, and then, used these data to fit a metabolically coupled balloon model. Normal rats undergoing forepaw stimulation were used as control. RESULTS: We found a significant higher contribution from high local field potential frequency bands to the cerebral blood flow (CBF) responses in the epileptogenic cortices during ictal neuronal activities. The hemodynamic responses associated with ictal activities were distance-dependent with regard to the seizure focus, though varied in profiles from those obtained from acute seizure models. Parameters linking the CBF and relative concentration of deoxyhemoglobin to neuronal activity in the biophysical model were significantly different between epileptic and normal rats. CONCLUSION: We found that the coefficient associated with the strength of the functional hyperemic response was significantly larger in the epileptogenic cortices, and changes in hemoglobin concentration associated with ictal activity reflected the existence of a significantly higher baseline for oxygen metabolism in the epileptogenic cortices. SIGNIFICANCE: Introducing methods to estimate these physiological parameters would enhance our understanding of the neurovascular/metabolic coupling in epileptic brains and improve the localization accuracy on irritative zones and seizure-onset zones through neuroimaging techniques.


Asunto(s)
Circulación Cerebrovascular/fisiología , Epilepsias Parciales/fisiopatología , Modelos Biológicos , Consumo de Oxígeno/fisiología , Animales , Simulación por Computador , Masculino , Ratas , Ratas Wistar
14.
J Vis Exp ; (100): e52700, 2015 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-26131755

RESUMEN

Electroencephalogram (EEG) has been traditionally used to determine which brain regions are the most likely candidates for resection in patients with focal epilepsy. This methodology relies on the assumption that seizures originate from the same regions of the brain from which interictal epileptiform discharges (IEDs) emerge. Preclinical models are very useful to find correlates between IED locations and the actual regions underlying seizure initiation in focal epilepsy. Rats have been commonly used in preclinical studies of epilepsy; hence, there exist a large variety of models for focal epilepsy in this particular species. However, it is challenging to record multichannel EEG and to perform brain source imaging in such a small animal. To overcome this issue, we combine a patented-technology to obtain 32-channel EEG recordings from rodents and an MRI probabilistic atlas for brain anatomical structures in Wistar rats to perform brain source imaging. In this video, we introduce the procedures to acquire multichannel EEG from Wistar rats with focal cortical dysplasia, and describe the steps both to define the volume conductor model from the MRI atlas and to uniquely determine the IEDs. Finally, we validate the whole methodology by obtaining brain source images of IEDs and compare them with those obtained at different time frames during the seizure onset.


Asunto(s)
Encéfalo/fisiopatología , Electroencefalografía/métodos , Epilepsias Parciales/fisiopatología , Animales , Modelos Animales de Enfermedad , Ratas , Ratas Wistar
15.
Comput Intell Neurosci ; 2015: 481375, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25866504

RESUMEN

We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces.


Asunto(s)
Algoritmos , Inteligencia Artificial , Interfaces Cerebro-Computador , Modelos Neurológicos , Simulación por Computador , Refuerzo en Psicología
16.
Artículo en Inglés | MEDLINE | ID: mdl-24110957

RESUMEN

This paper presents the first attempt to quantify the individual performance of the subject and of the computer agent on a closed loop Reinforcement Learning Brain Machine Interface (RLBMI). The distinctive feature of the RLBMI architecture is the co-adaptation of two systems (a BMI decoder in agent and a BMI user in environment). In this work, an agent implemented using Q-learning via kernel temporal difference (KTD)(λ) decodes the neural states of a monkey and transforms them into action directions of a robotic arm. We analyze how each participant influences the overall performance both in successful and missed trials by visualizing states, corresponding action value Q, and resulting actions in two-dimensional space. With the proposed methodology, we can observe how the decoder effectively learns a good state to action mapping, and how neural states affect the prediction performance.


Asunto(s)
Interfaces Cerebro-Computador , Refuerzo en Psicología , Algoritmos , Animales , Conducta Animal , Callithrix , Aprendizaje , Microelectrodos , Programas Informáticos
17.
Artículo en Inglés | MEDLINE | ID: mdl-24111003

RESUMEN

Intracortical neural recordings are typically high-dimensional due to many electrodes, channels, or units and high sampling rates, making it very difficult to visually inspect differences among responses to various conditions. By representing the neural response in a low-dimensional space, a researcher can visually evaluate the amount of information the response carries about the conditions. We consider a linear projection to 2-D space that also parametrizes a metric between neural responses. The projection, and corresponding metric, should preserve class-relevant information pertaining to different behavior or stimuli. We find the projection as a solution to the information-theoretic optimization problem of maximizing the information between the projected data and the class labels. The method is applied to two datasets using different types of neural responses: motor cortex neuronal firing rates of a macaque during a center-out reaching task, and local field potentials in the somatosensory cortex of a rat during tactile stimulation of the forepaw. In both cases, projected data points preserve the natural topology of targets or peripheral touch sites. Using the learned metric on the neural responses increases the nearest-neighbor classification rate versus the original data; thus, the metric is tuned to distinguish among the conditions.


Asunto(s)
Encéfalo/fisiología , Teoría de la Información , Aprendizaje , Corteza Motora/fisiología , Animales , Electroencefalografía , Femenino , Miembro Anterior/fisiología , Macaca , Masculino , Ratas Long-Evans , Análisis y Desempeño de Tareas
18.
Artículo en Inglés | MEDLINE | ID: mdl-22255624

RESUMEN

This paper introduces a kernel adaptive filter implemented with stochastic gradient on temporal differences, kernel Temporal Difference (TD)(λ), to estimate the state-action value function in reinforcement learning. The case λ=0 will be studied in this paper. Experimental results show the method's applicability for learning motor state decoding during a center-out reaching task performed by a monkey. The results are compared to the implementation of a time delay neural network (TDNN) trained with backpropagation of the temporal difference error. From the experiments, it is observed that kernel TD(0) allows faster convergence and a better solution than the neural network.


Asunto(s)
Algoritmos , Inteligencia Artificial , Encéfalo/fisiología , Electroencefalografía/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Refuerzo en Psicología , Interfaz Usuario-Computador , Biomimética/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA